870 research outputs found
Evanescent states in 2D electron systems with spin-orbit interaction and spin-dependent transmission through a barrier
We find that the total spectrum of electron states in a bounded 2D electron
gas with spin-orbit interaction contains two types of evanescent states lying
in different energy ranges. The first-type states fill in a gap, which opens in
the band of propagating spin-splitted states if tangential momentum is nonzero.
They are described by a pure imaginary wavevector. The states of second type
lie in the forbidden band. They are described by a complex wavevector. These
states give rise to unusual features of the electron transmission through a
lateral potential barrier with spin-orbit interaction, such as an oscillatory
dependence of the tunneling coefficient on the barrier width and electron
energy. But of most interest is the spin polarization of an unpolarized
incident electron flow. Particularly, the transmitted electron current acquires
spin polarization even if the distribution function of incident electrons is
symmetric with respect to the transverse momentum. The polarization efficiency
is an oscillatory function of the barrier width. Spin filtering is most
effective, if the Fermi energy is close to the barrier height.Comment: 9 pages, 9 figures, more general boundary conditions are used, typos
correcte
Interplay of spin-orbit coupling and Zeeman splitting in the absorption lineshape of 2D fermions
We suggest that electron spin resonance (ESR) experiment can be used as a
probe of spinon excitations of hypothetical spin-liquid state of frustrated
antiferromagnet in the presence of asymmetric Dzyaloshinskii-Moriya (DM)
interaction. We describe assumptions under which the ESR response is reduced to
the response of 2D electron gas with Rashba spin-orbit coupling. Unlike
previous treatments, the spin-orbit coupling, \Delta_{SO}, is not assumed small
compared to the Zeeman splitting, \Delta_Z. We demonstrate that ESR response
diverges at the edges of the absorption spectrum for ac magnetic field
perpendicular to the static field. At the compensation point,
\Delta_{SO}\approx \Delta_Z, the broad absorption spectrum exhibits features
that evolve with temperature, T, even when T is comparable to the Fermi energy.Comment: 11 pages, 6 figure
Sum rules for spin-Hall conductivity cancelation
It has been shown recently that the universal dc spin conductivity of
two-dimensional electrons with a Rashba spin-orbit interaction is canceled by
vertex corrections in a weak scattering regime. We prove that the zero bulk
spin conductivity is an intrinsic property of the free-electron Hamiltonian and
scattering is merely a tool to reveal this property in terms of the
diagrammatic technique. When Zeeman energy is neglected, the zero dc
conductivity persists in a magnetic field. Spin conductivity increases
resonantly at the cyclotron frequency and then decays towards the universal
value.Comment: 4 pages, 1 figur
Spin-resolved scattering through spin-orbit nanostructures in graphene
We address the problem of spin-resolved scattering through spin-orbit
nanostructures in graphene, i.e., regions of inhomogeneous spin-orbit coupling
on the nanometer scale. We discuss the phenomenon of spin-double refraction and
its consequences on the spin polarization. Specifically, we study the
transmission properties of a single and a double interface between a normal
region and a region with finite spin-orbit coupling, and analyze the
polarization properties of these systems. Moreover, for the case of a single
interface, we determine the spectrum of edge states localized at the boundary
between the two regions and study their properties
Efficient electron spin manipulation in a quantum well by an in-plane electric field
Electron spins in a semiconductor quantum well couple to an electric field
{\it via} spin-orbit interaction. We show that the standard spin-orbit coupling
mechanisms can provide extraordinary efficient electron spin manipulation by an
in-plane ac electric field
Physical Limits of the ballistic and non-ballistic Spin-Field-Effect Transistor: Spin Dynamics in Remote Doped Structures
We investigate the spin dynamics and relaxation in remotely-doped two
dimensional electron systems where the dopants lead to random fluctuations of
the Rashba spin-orbit coupling. Due to the resulting random spin precession,
the spin relaxation time is limited by the strength and spatial scale of the
random contribution to the spin-orbit coupling. We concentrate on the role of
the randomness for two systems where the direction of the spin-orbit field does
not depend on the electron momentum: the spin field-effect transistor with
balanced Rashba and Dresselhaus couplings and the (011) quantum well. Both of
these systems are considered as promising for the spintronics applications
because of the suppression of the Dyakonov-Perel' mechanism there makes the
realization of a spin field effect transistor in the diffusive regime possible.
We demonstrate that the spin relaxation through the randomness of spin-orbit
coupling imposes important physical limitations on the operational properties
of these devices.Comment: 10 pages, 4 figure
Influences of an impurity on the transport properties of one-dimensional antisymmetric spin filter
The influences of an impurity on the spin and the charge transport of
one-dimensional antisymmetric spin filter are investigated using bosonization
and Keldysh formulation and the results are highlighted against those of
spinful Luttinger liquids. Due to the dependence of the electron spin
orientation on wave number the spin transport is not affected by the impurity,
while the charge transport is essentially identical with that of spinless
one-dimensional Luttinger liquid.Comment: 7 pages, 2 figures. To appear in Physical Review
Spin-polarized electric currents in quantum transport through tubular two-dimensional electron gases
Scattering theory is employed to derive a Landauer-type formula for the spin
and the charge currents, through a finite region where spin-orbit interactions
are effective. It is shown that the transmission matrix yields the spatial
direction and the magnitude of the spin polarization. This formula is used to
study the currents through a tubular two-dimensional electron gas. In this
cylindrical geometry, which may be realized in experiment, the transverse
conduction channels are not mixed (provided that the spin-orbit coupling is
uniform). It is then found that for modest boundary scattering, each step in
the quantized conductance is split into two, and the new steps have a non-zero
spin conductance, with the spin polarization perpendicular to the direction of
the current.Comment: 6 pages, 5 figure
Quasi-Ferromagnet Spintronics in Graphene Nanodisk-Lead System
A zigzag graphene nanodisk can be interpreted as a quantum dot with an
internal degree of freedom. It is well described by the infinite-range
Heisenberg model. We have investigated its thermodynamical properties. There
exists a quasi-phase transition between the quasi-ferromagnet and
quasi-paramagnet states, as signaled by a sharp peak in the specific heat and
in the susceptability. We have also analyzed how thermodynamical properties are
affected when two leads are attached to the nanodisk. It is shown that lead
effects are described by the many-spin Kondo Hamiltonian. There appears a new
peak in the specific heat, and the multiplicity of the ground state becomes
just one half of the system without leads. Another lead effect is to enhance
the ferromagnetic order. Being a ferromagnet, a nanodisk can be used as a spin
filter. Furthermore, since the relaxation time is finite, it is possible to
control the spin of the nanodisk by an external spin current. We then propose a
rich variety of spintronic devices made of nanodisks and leads, such as spin
memory, spin amplifier, spin valve, spin-field-effect transistor, spin diode
and spin logic gates such as spin-XNOR gate and spin-XOR gate. Graphene
nanodisks could well be basic components of future nanoelectronic and
spintronic devices.Comment: 12 pages, 13 figures, invited paper to "focus on graphene
- …
