3 research outputs found

    Reliability study of the NiH2 strain gage

    Get PDF
    This paper summarizes a joint study by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC). This study characterizes the reliability and robustness of the temperature compensated strain gages currently specified for sensing of internal pressure of NiH2 cells. These strain gages are characterized as fully encapsulated, metallic foil grids with known resistance that varies with deformation. The measurable deformation, when typically installed on the hemispherical portion of a NiH2 cell, is proportional to the material stresses as generated by internal cell pressures. The internal pressure sensed in this manner is calibrated to indicate the state-of-charge for the cell. This study analyzes and assesses both robustness and reliability for the basic design of the strain gage, the installation of the strain gage, and the circuitry involved

    Fault tree analysis: NiH2 aerospace cells for LEO mission

    Get PDF
    The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore