236 research outputs found
Jacobi-Nijenhuis algebroids and their modular classes
Jacobi-Nijenhuis algebroids are defined as a natural generalization of
Poisson-Nijenhuis algebroids, in the case where there exists a Nijenhuis
operator on a Jacobi algebroid which is compatible with it. We study modular
classes of Jacobi and Jacobi-Nijenhuis algebroids
Aligned carbon nanotube-based sensors for strain monitoring of composites
This paper presents a proof of concept of an aligned carbon nanotube (CNT) based strain sensor tested on the surface of a conventional aeronautic laminate. Two type of strain sensors were produced, type S and type T, in which the CNT alignment was parallel (Y) and transversal (X) to strain direction, respectively. Their electrical resistance response was thoroughly evaluated during cyclic tensile tests. Despite some disparities of the relative electrical resistance behavior in specific strain cycles, probably due to one-off interferences in the CNT conductive mechanism, the obtained gauge factor (GF) values were quite stable. Also, the electrical resistance anisotropy was evaluated and its opposite behavior when the samples were strained in Y- and X-directions may be used as strain direction indicator. Being able to quantify and indicate strain direction with just one 10 x 10 mm CNT patch, this sensor has proven to be suitable for strain sensing applications, namely for structure health monitoring of advanced composites.- Manuscript received March 4, 2021; revised March 25, 2021; accepted March 31, 2021. Date of publication April 5, 2021; date of current version June 30, 2021. This work was supported in part by the Project "Introduction of Advanced Materials Technologies Into New Product Development for the Mobility Industries-IAMAT," under the MIT-Portugal program exclusively financed by Fundacao para a Ciencia e Tecnologia "FCT" under Grant MITP-TB/PFM/0005/2013 and in part by the North Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreements through the European Regional Development Fund (ERDF) Project "Technologies for Sustainable and Smart Innovative Products (TSSiPRO)" under Grant NORTE-01-0145FEDER-000015. The associate editor coordinating the review of this article and approving it for publication was Dr. Cheng-Sheng Huang. (Corresponding author: Ana Raquel Santos.
Thin veils strategically interleaved to reduce low velocity damages on CFRP
Low velocity impact (LVI) events on carbon fibre reinforced polymers (CFRP) are one of the most problematic issues in composite applications for advanced markets, such as aeronautic, aerospace and army. Due to their own brittleness and layer-by-layer nature, when exposed to LVI solicitations, composites tend to develop internal damages that may be barely visible at naked eye. The high complex field of internal stresses developed in composite laminates during impact usually causes crack initiation and defects between layers, which may propagate (delamination) due to the low toughness that this unreinforced resin rich region exhibits. In this work, to try minimizing this propagation problem, thin veils of different materials (glass, carbon, aramid and polyester), were interleaved between different layers of a carbon/epoxy laminate typically used to produce aircraft components. In addition, to decide between which layers could be better interleave the above referred veils a theoretical study was carried out to evaluate the stresses distribution across laminate thickness when a bending moment is applied, on a carbon/epoxy laminate under study. The new carbon/epoxy laminates using the thin interleaved veils were produced by vacuum bag infusion and their mechanical characteristics and LVI responses compared with those obtained on a non-interleaved one produced in the same processing conditions. Interlaminar shear strength (ILSS) and LVI tests at four different energy impact levels were performed in order to evaluate the respective characteristics of the laminates, their damage tolerance and impact response. All laminates studied were also observed under scanning electron microscopes (SEM) for assessing their processing quality.FCT, Programa MIT Portugal, projeto “IAMAT – Introduction of advanced materials technologies into new product development for the mobility industries
Bioinspired architectures toward improving damage resistance on CFRP laminates
Carbon fibre reinforced polymers (CFRP) are widely used in advanced applications due to their high performance and low weight, however, under certain conditions, they tend to develop internal damages that may compromise the component performance in service. Low velocity impact (LVI) events are one of the most common and dangerous solicitations that CFRP laminates must face during their life time, under these conditions they tend to develop so-called barely visible impact damages (BVID) that may propagate in service. To improve damage tolerance to LVI events, three new bioinspired CFRP laminates were developed and their mechanical properties and impact behaviour were compared to a typical aeronautic standard laminate in this work. All these studied laminates, having approximately the same thickness of 4 mm, were produced by vacuum bag infusion and observed under scanning electron microscopes (SEM) for assessing their processing quality. Tensile, interlaminar shear strength (ILSS) and LVI tests were performed in order to evaluate their Young’s modules, global delamination resistance and impact response. LVI tests were performed for all laminates at the four different impact energy levels of 13.5, 25, 40 and 80 J and damage shape and areas were subsequentially evaluated by ultrasonic C-scan. SEM observations and the good agreement between theoretical and experimental Young’s modules results demonstrated a processing quality. ILSS results have shown that the bioinspired hybrid laminate (HYB) presented better global resistance to delamination when compared to the other laminates. LVI tests and C-scan inspection have also demonstrated that HL and HL_S laminates exhibited higher resistance to damage propagation and smaller damaged area, respectively.FCT, Programa MIT Portugal, projeto “IAMAT – Introduction of advanced materials technologies into new product development for the mobility industries
Carbon nanotubes based multi-directional strain sensor
In this work a new carbon nanotubes (CNT) based multi-directional strain sensor capable of quantifying and indicate strain direction is foreseen. This work investigates the electromechanical behavior of an aligned CNT sensing patch strained at 45◦ in order to validate its multi-directional sensing capability. Vertically aligned CNT forests are produced by chemical vapor deposition (CVD) and then mechanically knocked down onto polyimide (PI) films. Two configurations, diamond (D sample) and square (Sq sample), are considered. The relative electrical resistance (ΔR/R0) and the electrical anisotropy (RB/RA) upon strain increments are analyzed and compared to previous work results (0◦ and 90◦ strain direction). Both 45◦ samples, D and Sq, are sensitive to strain. A correlation between electrical anisotropy behavior and strain direction (0◦, 45◦ and 90◦) is established. The results show that with only an aligned CNT small patch it is possible to quantify and indicate strain in three directions.This work was partially funded under the project “IAMAT – Introduction of advanced materials technologies into new product development for the mobility industries”, with reference MITP-TB/PFM/0005/2013, under the MIT-Portugal program exclusively financed by FCT – Fundação para a Ciência e Tecnologia. This work was also co-financed by national funds through FCT – Fundação para a Ciência e Tecnologia, with the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020”
Impact damage mitigation using bioinspired CFRP laminate architectures
Carbon fibre reinforced polymers (CFRP) are widely used in advanced applications due to their high performance and low weight. However, when exposed to some conditions, as shear, dynamic and impact loading, they may develop interlaminar damages. One of the most common and dangerous solicitations that they must face in service is low velocity impact (LVI) events. To improve damage tolerance to LVI events, three new bioinspired CFRP laminates were developed and tested in the present work to assess and compare their behaviour to the one presented by a typical aeronautic standard laminate. All these studied laminates, having approximately the same thickness of 4 mm, were produced by vacuum bag infusion and observed under deflexion and scanning electron microscopes (SEM) for assessing their processing quality. Interlaminar shear strength (ILSS) and LVI tests were performed in order to evaluate their delamination resistance and impact response. LVI tests were performed for all laminates at the three different impact energy levels of 13.5 J, 25 J and 40 J. Those tests have shown that the bioinspired hybrid laminate (HYB) and all bioinspired ones presented higher interlaminar shear strength and energy absorption for the 40 J impact energy than the standard CFRP laminate (LS), respectively.FCT projeto do Programa MIT Portugal "IAMAT – Introduction of advanced materials technologies into new product development for the mobility industries
Quasi static mechanical study of vacuum bag infused bouligand inspired composites
Three novel Bouligand inspired composites were produced by vacuum bag infusion manufacturing process and their quasi-static mechanical performance were compared to a conventional aircraft laminate. A morphologic/physical study was first conducted for all configurations and their mechanical response under tensile, three-point bending (3-PB) and interlaminar shear strength (ILSS) tests were then evaluated and discussed. No significant number of voids were detected into laminates, however, a rough and poor defined interlaminar region was observed in both Bouligand-like configurations. Under quasi-static mechanical solicitations, and when compared to reference layup, bioinspired configurations have shown similar and 18% higher tensile and flexural modulus. However, the progressive and translaminar failure mode, typically observed in these configurations, led to a lower load bearing capability. Despite presented similar interlaminar resistance than reference, finite element models built have revealed a good correlation between cross-section stress field and failure mode observed experimentally.Fundação para a Ciência e Tecnologia (FCT), Projetos UIDB/05256/2020, UIDP/05256/2020 e MITP-TB/PFM/0005/201
Single flow-based system for the automatic multiparametric nutrients (NPK & Fe) assessment in soil leachates
A multiparametric sequential injection system for the determination of phosphate, nitrite, nitrate, potassium, and iron(III) in a single manifold was developed. The main goal of the proposed method was to develop an efficient tool to assess a number of essential chemical compounds in soils, providing the corresponding information on soil fertility and, additionally, information on possible groundwater contamination. The method was applied for the quantification of the aforementioned parameters in simulated leachates produced in laboratory-scale core columns. The relative standard deviations of ten replicate analyses of a standard were: 6% for phosphate; 2% for nitrite; 2% for nitrate; 5% for potassium; and 6% for iron(III). The limits of detection and quantification were: 2.15 and 7.18 μmol/L for phosphate determination; 0.22 and 0.73 μmol/L for nitrite determination; 3.42 and 8.00 μmol/L for nitrate determination; 39 μmol/L (limit of detection) for potassium determination; and 0.46 and 1.85 μmol/L for iron(III) determination. The sequential injection system was successfully applied for the quantification of multiple soil chemical components (PO43−, NO2−, NO3−, K+, and Fe3+) in soil leachates. The analysis of a sample, involving all the analytes, has a duration of 28 min.info:eu-repo/semantics/publishedVersio
Aligned carbon nanotube based sensors for strain sensing applications
This paper presents an aligned carbon nanotube (CNT)-based strain sensor. Vertical aligned carbon nanotubes (VA-CNT), synthesized by chemical vapour deposition (CVD), were knocked down onto polymeric films, in order to obtain a thin 10 × 10 × 0.05 mm CNT patch. Different polymeric substrates, ADEXepoxy, polyethylene terephthalate (PET) and polyimide (PI) were used. The samples’ morphology before and after the knock down process, specifically their alignment, was observed by scanning electron microscopy (SEM). The good quality of the synthesized VA-CNT was assessed by Raman spectroscopy. Furthermore, transmission electron microscopy (TEM) analysis was carried out to determine the average wall number and diameters (inner and outer) of the VA-CNT. A MATLAB software with an adapted Van der Pauw method for anisotropic conductors was developed to determine the electric properties of the obtained samples, which were strained in the transverse (X) and parallel (Y) directions with respect to the CNT alignment. The electric anisotropy, defined as electric resistance ratio between obtained measurements along the X (Rxx) and Y (Ryy) -axes, decreases with deformation increment when the sample was strained in the Y-direction, while it increases when strained in the X-direction. Moreover, the obtained Gauge factor values showed a much sensitive response to deformation, i.e., approximately 47% increase in GF values, when the samples are strained transversely to CNT alignment. These results showed that the piezoresistive CNT/polymeric based sensor produced is suitable for strain sensing applications.This work was funded under the project "IAMAT -Introduction of advanced materials technologies into new product development for the mobility industries", with reference MITP-TB/PFM/0005/2013, under the MIT-Portugal program exclusively financed by FCT - Fundacao para a Ciencia e Tecnologia. This work was carried out in part using the Advanced Electron Microscopy, Imaging and Spectroscopy Facility (TEM) of INL - Iberian Nanotechonology Laboratory
Multiple-Locus Variable Number Tandem Repeat Analysis for Streptococcus pneumoniae: Comparison with PFGE and MLST
In the era of pneumococcal conjugate vaccines, surveillance of pneumococcal disease and carriage remains of utmost importance as important changes may occur in the population. To monitor these alterations reliable genotyping methods are required for large-scale applications. We introduced a high throughput multiple-locus variable number tandem repeat analysis (MLVA) and compared this method with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The MLVA described here is based on 8 BOX loci that are amplified in two multiplex PCRs. The labeled PCR products are sized on an automated DNA sequencer to accurately determine the number of tandem repeats. The composite of the number of repeats of the BOX loci makes up a numerical profile that is used for identification and clustering. In this study, MLVA was performed on 263 carriage isolates that were previously characterized by MLST and PFGE. MLVA, MLST and PFGE (cut-off of 80%) yielded 164, 120, and 87 types, respectively. The three typing methods had Simpson's diversity indices of 98.5% or higher. Congruence between MLST and MLVA was high. The Wallace of MLVA to MLST was 0.874, meaning that if two strains had the same MLVA type they had an 88% chance of having the same MLST type. Furthermore, the Wallace of MLVA to clonal complex of MLST was even higher: 99.5%. For some isolates belonging to a single MLST clonal complex although displaying different serotypes, MLVA was more discriminatory, generating groups according to serotype or serogroup. Overall, MLVA is a promising genotyping method that is easy to perform and a relatively cheap alternative to PFGE and MLST. In the companion paper published simultaneously in this issue we applied the MLVA to assess the pneumococcal population structure of isolates causing invasive disease in the Netherlands before the introduction of the 7-valent conjugate vaccine
- …