145 research outputs found

    Hydrogen-Bonded Networks Based on Cobalt(II), Nickel(II), and Zinc(II) Complexes of N,N'-Diethylurea

    Get PDF
    N,N'-diethylurea (DEU) was employed as a ligand to form the octahedral complexes [M(DEU)6]2+ (M=Co, Ni and Zn). Compounds [Co(DEU)6](BF4)2 (1), [Co(DEU)6](CIO4)2 (2), [Ni(DEU)6](CIO4)2 (3), and [Zn(DMU)6](CIO4)2 (4) have been prepared from the reactions of DEU and the appropriate hydrated metal(II) salts in EtOH in the presence of 2,2-dimethoxypropane. Crystal structure determinations demonstrate the existence of [M(DEU)6]2+ cations and CIO4− (in 2–4) or BF4− (in 1) counterions. The [M(DEU)6]2+ cations in the solid state are stabilized by a pseudochelate effect due to the existence of six strong intracationic N-H ⋯ O(DEU) hydrogen bonds. The [M(DEU)6]2+ cations and counterions self-assemble to form hydrogen-bonded 2D architectures in 2–4 that conform to the kgd (kagome dual) network, and a 3D hydrogen-bonded rtl (rutile) network in 1. The nature of the resulting supramolecular structures is influenced by the nature of the counter-ion. The complexes were also characterized by vibrational spectroscopy (IR)

    A Mononuclear and a Mixed-Valence Chain Polymer Arising from Copper(II) Halide Chemistry and the Use of 2,2′-Pyridil

    Get PDF
    Reactions of 2,2′-pyridil (pyCOCOpy) with CuCl2 · 2H2O and CuBr2 in EtOH yielded the mononuclear complex [Cu(pyCOOEt)2Cl2] · H2O (1) and the one-dimensional, mixed-valence complex [Cu2ICuII(pyCOOEt)2Br4]n (2), respectively. Both complexes crystallize in the triclinic space group P 1¯. The lattice constants are a = 8.382(2), b = 9.778(2), c = 7.814(2), α = 101.17(1), β = 114.55(1), γ = 94.14(1)° for 1 and a = 8.738(1), b = 9.375(2), c = 7.966(1), α = 79.09(1), β = 64.25(1), γ = 81.78(1)° for 2. 2,2′-pyridil undergoes a metal-assisted alcoholysis and oxidation leading to decomposition and yielding the ethyl picolinate (pyCOOEt) ligand. The autoredox process associated with the reduction of copper(II) to copper(I) in the case of complex 2 is discussed in terms of the increased redox activity of the copper(II) bromide system relative to the copper(II) chloride system

    Mononuclear and Dinuclear Manganese(II) Complexes from the Use of Methyl(2-pyridyl)ketone Oxime

    Get PDF
    The reactions of methyl(2-pyridyl)ketone oxime, (py)C(Me)NOH, with manganese(II) sulfate monohydrate have been investigated. The reaction between equimolar quantities of MnSO4 · H2O and (py)C(Me)NOH in H2O lead to the dinuclear complex [Mn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH, 1 · (py)C(Me)NOH, while employment of NaOMe as base affords the compound [Mn(HCO2)2{(py)C(Me)NOH}2] (2). The structures of both compounds have been determined by single crystal X-ray diffraction. In both complexes, the organic ligand chelates through its nitrogen atoms. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes

    In Search for Titanocene Complexes with Improved Cytotoxic Activity: Synthesis, X-Ray Structure, and Spectroscopic Study of Bis(η5-cyclopentadienyl)difluorotitanium(IV)

    Get PDF
    The 1 : 2 reaction of [Ti(η5-C5H5)2Cl2] and AgF in CHCl3/H2O yielded the fluoro analog [Ti(η5-C5H5)2F2] (1) in almost quantitative yield (C5H5 is the cyclopentadienyl group). The coordination about the TiIV atom formed by two fluoro ligands and the centroids of the cyclopentadienyl rings is distorted tetrahedral. The compound crystallizes in the orthorhombic space group C2cm. The lattice constants are a = 5.9055(4), b = 10.3021(5), c = 14.2619(9) Å, and α = β = γ = 90°. The complex has been characterized by elemental analyses and spectroscopic (IR, 1H NMR) data. A structural comparison of the four members of the [Ti(η5-C5H5)2X2] family of complexes (X = F, Cl, Br, I) is attempted

    Synthesis, X-Ray Structure, and Characterization of Catena-bis(benzoate)bis{N,N-bis(2-hydroxyethyl)glycinate}cadmium(II)

    Get PDF
    The reaction of N, N-bis(2-hydroxyethyl)glycine (bicine; bicH3) with Cd(O2CPh)2 · 2H2O in MeOH yielded the polymeric compound [Cd2(O2CPh)2(bicH2)2]n(1). The complex crystallizes in the tetragonal space group P41212. The lattice constants are a = b = 12.737(5) and c = 18.288(7) Å. The compound contains chains of repeating {Cd2(O2CPh)2(bicH2)2} units. One CdII atom is coordinated by two carboxylate oxygen, four hydroxyl oxygen, and two nitrogen atoms from two symmetry-related 2.21111 (Harris notation) bicH2− ligands. The other CdII atom is coordinated by six carboxylate oxygen atoms, four from two bicH2− ligands and two from the monodentate benzoate groups. Each bicinate(-1) ligand chelates the 8-coordinate, square antiprismatic CdII atom through one carboxylate oxygen, the nitrogen, and both hydroxyl oxygen atoms and bridges the second, six-coordinate trigonal prismatic CdII center through its carboxylate oxygen atoms. Compound 1 is the first structurally characterized cadmium(II) complex containing any anionic form of bicine as ligand. IR data of 1 are discussed in terms of the coordination modes of the ligands and the known structure

    Use of the 2-Pyridinealdoxime/N,N′-Donor Ligand Combination in Cobalt(III) Chemistry: Synthesis and Characterization of Two Cationic Mononuclear Cobalt(III) Complexes

    Get PDF
    The use of 2-pyridinealdoxime (paoH)/N,N′-donor ligand (L-L) “blend” in cobalt chemistry has afforded two cationic mononuclear cobalt(III) complexes of the general type [Co(pao)2(L-L)]+, where L-L = 1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy). The CoCl2/paoH/L-L (1 : 2 : 1) reaction system in MeOH gives complexes [CoIII(pao)2(phen)]Cl·2H2O (1·2H2O) and [CoIII(pao)2(bpy)]Cl·1.5MeOH (2·1.5MeOH). The structures of the complexes were determined by single-crystal X-ray crystallography. The CoIII ions are six-coordinate, surrounded by three bidentate chelating ligands, that is, two pao− and one phen or bpy. The deprotonated oxygen atom of the pao− ligand remains uncoordinated and participates in hydrogen bonding with the solvate molecules. IR data of the complexes are discussed in terms of the nature of bonding and the known structures

    A Mononuclear and a Mixed-Valence Chain Polymer Arising from Copper(II) Halide Chemistry and the Use of 2,2'-Pyridil

    Get PDF
    Reactions of 2, 2 -pyridil (pyCOCOpy) with (2) , respectively. Both complexes crystallize in the triclinic space group P 1. The lattice constants are a = 8.382(2), b = 9.778(2), c = 7.814(2), α = 101.17(1), β = 114.55(1), γ = 94.14(1) • for 1 and a = 8.738(1), b = 9.375(2), c = 7.966(1), α = 79.09(1), β = 64.25(1), γ = 81.7

    Mononuclear lanthanide(III)-salicylideneaniline complexes: synthetic, structural, spectroscopic and magnetic studies

    Get PDF
    The reactions of hydrated lanthanide(III) [Ln(III)] nitrates and salicylideneaniline (salanH) have provided access to two families of mononuclear complexes depending on the reaction solvent used. In MeCN, the products are [Ln(NO3)3(salanH)2(H2O)]·MeCN, and, in MeOH, the products are [Ln(NO3)3(salanH)2(MeOH)]·(salanH). The complexes within each family are proven to be isomorphous. The structures of complexes [Ln(NO3)3(salanH)2(H2O)]·MeCN (Ln = Eu, 4·MeCN_Eu, Ln = Dy, 7·MeCN_Dy; Ln = Yb, 10·MeCN_Yb) and [Ln(NO3)3(salanH)2(MeOH)]·(salanH) (Ln = Tb, 17_Tb; Ln = Dy, 18_Dy) have been solved by single-crystal X-ray crystallography. In the five complexes, the LnIII center is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms from the two monodentate zwitterionic salanH ligands, and one oxygen atom from the coordinated H2O or MeOH group. The salanH ligands are mutually "cis" in 4·MeCN_Eu, 7·MeCN_Dy and 10·MeCN_Yb while they are "trans" in 17_Tb and 18_Dy. The lattice salanH molecule in 17_Tb and 18_Dy is also in its zwitterionic form with the acidic H atom being clearly located on the imine nitrogen atom. The coordination polyhedra defined by the nine oxygen donor atoms can be described as spherical tricapped trigonal prisms in 4·MeCN_Eu, 7·MeCN_Dy, and 10·MeCN_Yb and as spherical capped square antiprisms in 17_Tb and 18_Dy. Various intermolecular interactions build the crystal structures, which are completely different in the members of the two families. Solid-state IR data of the complexes are discussed in terms of their structural features. 1H NMR data for the diamagnetic Y(III) complexes provide strong evidence that the compounds decompose in DMSO by releasing the coordinated salanH ligands. The solid complexes emit green light upon excitation at 360 nm (room temperature) or 405 nm (room temperature). The emission is ligand-based. The solid Pr(III), Nd(III), Sm(III), Er(III), and Yb(III) complexes of both families exhibit LnIII-centered emission in the near-IR region of the electromagnetic spectrum, but there is probably no efficient salanH→LnIII energy transfer responsible for this emission. Detailed magnetic studies reveal that complexes 7·MeCN_Dy, 17_Tb and 18_Dy show field-induced slow magnetic relaxation while complex [Tb(NO3)3(salanH)2(H2O)]·MeCN (6·MeCN_Tb) does not display such properties. The values of the effective energy barrier for magnetization reversal are 13.1 cm−1 for 7·MeCN_Dy, 14.8 cm−1 for 17_Tb, and 31.0 cm−1 for 18_Dy. The enhanced/improved properties of 17_Tb and 18_Dy, compared to those of 6_Tb and 7_Dy, have been correlated with the different supramolecular structural features of the two families. The molecules [Ln(NO3)3(salanH)2(MeOH)] of complexes 17_Tb and 18_Dy are by far better isolated (allowing for better slow magnetic relaxation properties) than the molecules [Ln(NO3)3(salanH)2(H2O)] in 6·MeCN_Tb and 7·MeCN_Dy. The perspectives of the present initial studies in the Ln(III)/salanH chemistry are discussed

    Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes

    Get PDF
    As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines

    A general synthetic route for the preparation of high-spin molecules: Replacement of bridging hydroxo ligands in molecular clusters by end-on azido ligands

    Get PDF
    Abstract A general method of increasing the ground-state total spin value of a polynuclear 3d-metal complex is illustrated through selected examples from cobalt(II) and nickel(II) cluster chemistry that involves the dianion of the gem-diol form of di-2-pyridyl ketone and carboxylate ions as organic ligands. The approach is based on the replacement of hydroxo bridges, that most often propagate antiferromagnetic exchange interactions, by the end-on azido ligand, which is a ferromagnetic coupler
    corecore