128 research outputs found

    A novel role for syndecan-3 in angiogenesis.

    Get PDF
    Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.This work was funded by Arthritis Research-UK (Grant No. 19207) and funds from the William Harvey Research Foundation both to JRW

    Proline-rich antimicrobial peptide, PR-39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells

    Get PDF
    PR-39 is an endogenous proline-rich antimicrobial peptide which induces the synthesis of syndecan-1, a transmembrane heparan sulphate proteoglycan involved in cell-to-matrix interactions and wound healing. Previously, we revealed that the expression of syndecan-1 was reduced in human hepatocellular carcinomas with high metastatic potential and speculated that syndecan-1 played an important role in inhibition of invasion and metastasis. It is assumed that a modification of this process with PR-39 and syndecan-1 may result in a new strategy by which it can inhibit the invasion and metastasis. Therefore, we transduced a gene of PR-39 into human hepatocellular carcinoma cell line HLF, which shows a low expression of syndecan-1 and a high in vitro invasive activity, and examined whether this procedure could reduce the invasive activity of tumour cells. In two transfectants with PR-39 gene, the syndecan-1 expression was induced and the invasive activity in type I collagen-coated chamber was inhibited. Moreover, these transfectants showed the suppression of motile activity assayed by phagokinetic tracks in addition to the disorganization of actin filaments observed by a confocal imaging system. In contrast, five transfectants with syndecan-1 gene in the HLF cells revealed suppression of invasive activity but did not alter the motile activity and actin structures of the cell. These results suggest that PR-39 has functions involved in the suppression of motile activity and alteration of actin structure on human hepatocellular carcinoma cells in addition to the suppression of invasive activity which might result from the induction of syndecan-1 expression. © 1999 Cancer Research Campaig

    FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells

    Get PDF
    Fibroblast growth factor receptor 3 (FGFR3) is one of four high-affinity tyrosine kinase receptors for the FGF family of ligands, frequently associated with growth arrest and induction of differentiation. The extracellular immunoglobulin (IgG)-like domains II and III are responsible for ligand binding; alternative usage of exons IIIb and IIIc of the Ig-like domain III determining the ligand-binding specificity of the receptor. By reverse transcriptase polymerase chain reaction (RT–PCR) a novel FGFR3IIIc variant FGFR3IIIS, expressed in a high proportion of tumours and tumour cell lines but rarely in normal tissues, has been identified. Unlike recently described nonsense transcripts of FGFR3, the coding region of FGFR3IIIS remains in-frame producing a novel protein. The protein product is coexpressed with FGFR3IIIc in the membrane and soluble cell fractions; expression in the soluble fraction is decreased after exposure to bFGF but not aFGF. Knockout of FGFR3IIIS using antisense has a growth-inhibitory effect in vitro, suggesting a dominant-negative function for FGFR3IIIS inhibiting FGFR3-induced growth arrest. In summary, alternative splicing of the FGFR3 Ig-domain III represents a mechanism for the generation of receptor diversity. FGFR3IIIS may regulate FGF and FGFR trafficking and function, possibly contributing to the development of a malignant phenotype

    Endothelial Cell Capture of Heparin-Binding Growth Factors under Flow

    Get PDF
    Circulation is an important delivery method for both natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule's fate, are difficult to interpret using traditional approaches. In this work, we analyzed and predicted growth factor capture under flow using computer modeling and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process was desired. The experimental module consisted of a bioreactor with synthetic endothelial-lined hollow fibers under flow. The physical design of the system was incorporated into the model parameters. The heparin-binding growth factor fibroblast growth factor-2 (FGF-2) was used for both the experiments and simulations. Our computational model was composed of three parts: (1) media flow equations, (2) mass transport equations and (3) cell surface reaction equations. The model is based on the flow and reactions within a single hollow fiber and was scaled linearly by the total number of fibers for comparison with experimental results. Our model predicted, and experiments confirmed, that removal of heparan sulfate (HS) from the system would result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicted a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters were investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that should prove advantageous for biologicals or drug delivery investigations

    The endothelial glycocalyx: composition, functions, and visualization

    Get PDF
    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    Activation of Basic Fibroblast Growth Factor (bFGF) by Heparan Sulphate (HS)

    No full text

    Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1.

    Get PDF
    Syndecan-1 is a transmembrane haparan sulphate proteoglycan that binds extracellular matrices and growth factors, making it a candidate to act between these regulatory molecules and intracellular signalling pathways. It has a highly conserved transmembrane/cytoplasmic domain that contains four conserved tyrosines. One of these is in a consensus sequence for tyrosine kinase phosphorylation. As an initial step to investigating whether or not phosphorylation of these tyrosines is part of a signal-transduction pathway, we have monitored the tyrosine phosphorylation of syndecan-1 by cytoplasmic tyrosine kinases in intact cells. Tyrosine phosphorylation of syndecan-1 is observed when NMuMG cells are treated with sodium orthovanadate or pervanadate, which have been shown to activate intracellular tyrosine kinases. Initial studies with sodium orthovanadate demonstrate a slow accumulation of phosphotyrosine on syndecan-1 over the course of several hours. Pervanadate, a more effective inhibitor of phosphatases, allows detection of phosphotyrosine on syndecan-1 within 5 min, with peak phosphorylation seen by 15 min. Concurrently, in a second process activated by pervanadate, syndecan-1 ectodomain is cleaved and released into the culture medium. Two phosphorylated fragments of syndecan-1 of apparent sizes 6 and 8 kDa remain with the cell after shedding of the ectodomain. The 8 kDa size class appears to be a highly phosphorylated form of the 6 kDa product, as it disappears if samples are dephosphorylated. These fragments contain the C-terminus of syndecan-1 and also retain at least a portion of the transmembrane domain, suggesting that they are produced by a cell surface cleavage event. Thus pervanadate treatment of cells results in two effects of syndecan-1: (i) phosphorylation of one or more of its tyrosines via the action of a cytoplasmic kinase(s) and (ii) cleavage and release of the ectodomain into the medium, producing a C-terminal fragment containing the transmembrane/cytoplasmic domain
    corecore