493 research outputs found

    X-boson cumulant approach to the periodic Anderson model

    Full text link
    The Periodic Anderson Model (PAM) can be studied in the infinite U limit by employing the Hubbard X operators to project out the unwanted states. We have already studied this problem employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the Chain Approximation (CHA) are employed. Here we treat the problem by a technique inspired in the mean field approximation of Coleman's slave-bosons method, and we obtain a description that avoids the unwanted phase transition that appears in the mean-field slave-boson method both when the chemical potential is greater than the localized level Ef at low temperatures (T) and for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in the tex

    Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry A1A_1

    Full text link
    Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1A_1. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen target for values of Q2Q^2 between 1.2 and 12 GeV2^2 and values of W2W^2 between 1 and 4 GeV2^2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable xx. This finding implies that the description of A1A_1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2Q^2 above 1.6 GeV2^2.Comment: 5 pages, 1 eps figure, table added, new references added, in print in Phys. Rev. Let

    Single-spin Azimuthal Asymmetries in Electroproduction of Neutral Pions in Semi-inclusive Deep-inelastic Scattering

    Get PDF
    A single-spin asymmetry in the azimuthal distribution of neutral pions relative to the lepton scattering plane has been measured for the first time in deep-inelastic scattering of positrons off longitudinally polarized protons. The analysing power in the sin(phi) moment of the cross section is 0.019 +/- 0.007(stat.) +/- 0.003(syst.). This result is compared to single-spin asymmetries for charged pion production measured in the same kinematic range. The pi^0 asymmetry is of the same size as the pi^+ asymmetry and shows a similar dependence on the relevant kinematic variables. The asymmetry is described by a phenomenological calculation based on a fragmentation function that represents sensitivity to the transverse polarization of the struck quark.Comment: 4 pages, 1 figure, replaced to correct eprint author field, 2nd replacement to correct figure; upper limit of model predictions are corrected. No correction to data or conclusion

    Quantum Impurity Entanglement

    Full text link
    Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is studied using analytic methods as well as large scale numerical density matrix renormalization group methods. The entanglement is investigated in terms of the von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the chain. The impurity contribution to the uniform part of the entanglement entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <= J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum impurity model is in the universality class of the single channel Kondo model and it is shown that in a quite universal way the presence of the impurity in the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K, associated with the screening of the impurity, the size of the Kondo screening cloud. The universality of Kondo physics then implies scaling of the form S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented clearly demonstrating this scaling. At the critical point, J_2^c, an analytic Fermi liquid picture is developed and analytic results are obtained both at T=0 and T>0. In the dimerized phase an appealing picure of the entanglement is developed in terms of a thin soliton (TS) ansatz and the notions of impurity valence bonds (IVB) and single particle entanglement (SPE) are introduced. The TS-ansatz permits a variational calculation of the complete entanglement in the dimerized phase that appears to be exact in the thermodynamic limit at the Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the critical point J_2^c. In appendices the relation between the finite temperature entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro

    Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    Get PDF
    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe

    Increase of SERS Signal Upon Heating or Exposure to a High-Intensity Laser Field: Benzenethiol on an AgFON Substrate

    Full text link
    The surface-enhanced Raman scattering (SERS) signal from an AgFON plasmonic substrate, recoated with benzenethiol, was observed to increase by about 100% upon heating for 3.5 min at 100C and 1.5 min at 125C. The signal intensity was found to increase further by about 80% upon a 10 sec exposure to a high-intensity (3.2 kW/cm^2) 785-nm cw laser, corresponding to 40 mW in a 40+/-5-um diameter spot. The observed increase in the SERS signal may be understood by considering the presence of benzenethiol molecules in an intermediate or 'precursor' state in addition to conventionally ordered molecules forming a self-assembled monolayer. The increase in the SERS signal arises from the conversion of the molecules in the precursor state to the chemisorbed state due to thermal and photo-thermal effects.Comment: 9 pages, 4 figures; J. Phys. Chem. C, accepte
    corecore