103 research outputs found

    Demonstration of Multiple Esterases of the Human Dental Pulp After Electrophoresis in Starch and Acrylamide Gels

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67050/2/10.1177_00220345670460065501.pd

    Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    Get PDF
    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role

    Mars in situ resource utilization (ISRU) with focus on atmospheric processing for near term application : a historical review and appraisal

    Get PDF
    The inspirational paper by Ash, Dowler and Varsi in 1978 proposing to utilize in situ re-sources on Mars (ISRU) rather than bringing them from Earth, originated the field of Mars ISRU that has been the subject of research ever since. In this paper we reviewed significant research re-ported on Mars ISRU since 1978 and reported briefly on accomplishments. We found that prior to 2014, progress on small tasks was sporadic and intermittent, always at low Technology Readiness Level (TRL). In 2014, the National Aeronautics and Space Administration (NASA) took a bold, im-aginative, unprecedented step to fund a major project in Mars ISRU: the so-called “MOXIE” (Mars Oxygen In Situ Experiment) in which an oxygen production plant based on solid oxide electrolysis (SOEC) was developed, and finally demonstrated on Mars in 2022 and 2023. While MOXIE leaves behind it a wealth of accomplishments, there remains the need to close remaining gaps with addi-tional laboratory and field work. Solid-oxide electrochemical cell (SOEC) technology has become a major area of worldwide investment for terrestrial energy and CO2 control. There is a very strong overlap between this terrestrial technology and Mars ISRU. NASA has already leveraged the terres-trial development work via MOXIE. NASA can leverage further advances with a comparatively small investment beyond 2023. Because NASA is engaged in a major program to return humans to the Moon, NASA’s focus is on lunar ISRU. Unfortunately, the mission impact and return on invest-ment for lunar ISRU does not compare to that for Mars ISRU. NASA’s concept for Mars ISRU is futuristic involving autonomous mining, transporting, and processing large amounts of Mars rego-lith. This might well occur long after initial human landings which could better profit in the near-term from MOXIE technology. By continuing further development of SOEC technology beyond MOXIE, while leveraging large investments in terrestrial applications, NASA can develop the Mars ISRU appropriate to nearer term human missions at modest investment. The goal of this paper is to place the relatively mature MOXIE technology advance and solid oxide electrolysis in general in perspective to the historical evolution of low TRL Mars ISRU technology

    Behavioral Deficits and Axonal Injury Persistence after Rotational Head Injury Are Direction Dependent

    Get PDF
    Pigs continue to grow in importance as a tool in neuroscience. However, behavioral tests that have been validated in the rodent model do not translate well to pigs because of their very different responses to behavioral stimuli. We refined metrics for assessing porcine open field behavior to detect a wide spectrum of clinically relevant behaviors in the piglet post-traumatic brain injury (TBI). Female neonatal piglets underwent a rapid non-impact head rotation in the sagittal plane (n=8 evaluable) or were instrumented shams (n=7 evaluable). Open field testing was conducted 1 day prior to injury (day −1) in order to establish an individual baseline for analysis, and at days +1 and +4 after injury. Animals were then killed on day +6 after injury for neuropathological assessment of axonal injury. Injured piglets were less interested in interacting with environmental stimuli and had a lower activity level than did shams. These data were compared with previously published data for axial rotational injuries in neonatal piglets. Acute behavioral outcomes post-TBI showed a dependence on the rotational plane of the brain injury, with animals with sagittal injuries demonstrating a greater level of inactivity and less random usage of the open field space than those with axial injuries. The persistence of axonal injury is also dependent on the rotational plane, with sagittal rotations causing more prolonged injuries than axial rotations. These results are consistent with animal studies, finite element models, and studies of concussions in football, which have all demonstrated differences in injury severity depending upon the direction of head impact rotation

    Solar Simulator Represents the Mars Surface Solar Environment

    Get PDF
    A report discusses the development of a Mars surface, laboratory-based solar simulator to create solar cells that can function better on Mars. The Mars Optimized Solar cell Technology (MOST) required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and developing and testing commercial cells modified for the Mars surface spectrum

    Comparisons of a Constrained Least Squares Model Versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    Get PDF
    Spectral reflectance data through the visible regime was collected at Las Campanas Observatory in Chile using an imaging spectrograph on one of the twin 6.5-m Magellan telescopes. The data were obtained on 1-2 May 2012 on the 'Landon Clay' telescope with the LDSS3 (Low Dispersion Survey Spectrograph 3). Five pieces of Geosynchronous Orbit (GEO) or near-GEO debris were identified and observed with an exposure time of 30 seconds on average. In addition, laboratory spectral reflectance data was collected using an Analytical Spectral Device (ASD) field spectrometer at California Polytechnic State University in San Luis Obispo on several typical common spacecraft materials including solar cells, circuit boards, various Kapton materials used for multi-layer insulation, and various paints. The remotely collected data and the laboratory-acquired data were then incorporated in a newly developed model that uses a constrained least squares method to unmix the spectrum in specific material components. The results of this model are compared to the previous method of a human-in-the-loop (considered here the traditional method) that identifies possible material components by varying the materials and percentages until a spectral match is obtained. The traditional model was found to match the remotely collected spectral data after it had been divided by the continuum to remove the space weathering effects, or a "reddening" of the materials. The constrained least-squares model also used the de-reddened spectra as inputs and the results were consistent with those obtained through the traditional method. For comparison, a first-order examination of including reddening effects into the constrained least-squares model will be explored and comparisons to the remotely collected data will be examined. The identification of each object's suspected material component will be discussed herein

    Chemical engineering beyond Earth : astrochemical engineering in the Space Age

    Get PDF
    The Space Race in the second half of the 20th century was primarily concerned with getting there and back. Gradually, technology and international collaboration opened new horizons, but human activity was mostly restricted around Earth’s orbit, while robotic missions were sent to solar system planets and moons. Now, nations and companies claim extraterrestrial resources and plans are in place to send humans and build bases on the Moon and Mars. Exploration and discovery are likely to be followed by exploitation and settlement. History suggests that the next step is the development of space industry. The new industrial revolution will take place in space. Chemical engineers have been educated for more than a century on designing processes adapted to the Earth’s conditions, involving a range of raw materials, atmospheric pressure, ambient temperature, solar radiation, and 1-g. In space, the raw materials differ, and the unique pressure, temperature and solar radiation conditions require new approaches and methods. In the era of space exploration, a new educational concept for chemical engineers is necessary to prepare them for playing key roles in space. To this end, we introduce Astrochemical Engineering as an advanced postgraduate course and we propose a 2-year 120 ECTS MEng curriculum with a brief description of the modules and learning outcomes. The first year includes topics such as low-gravity process engineering, cryogenics, and recycling systems. The second year includes the utilization of planetary resources and materials for space resources. The course culminates in an individual design project and comprises two specializations: Process Engineering and Space Science. The course will equip engineers and scientists with the necessary knowledge for the development of advanced processes and industrial ecologies based on closed self-sustained systems. These can be applied on Earth to help reinvent sustainability and mitigate the numerous challenges humanity faces

    Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    Get PDF
    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to ~1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum
    corecore