258 research outputs found
Escape configuration lattice near the nematic-isotropic transition: Tilt analogue of blue phases
We predict the possible existence of a new phase of liquid crystals near the
nematic-isotropic () transition. This phase is an achiral, tilt-analogue
of the blue phase and is composed of a lattice of {\em double-tilt},
escape-configuration cylinders. We discuss the structure and the stability of
this phase and provide an estimate of the lattice parameter.Comment: 5 pages, 6 figures (major revision, typos corrected, references
added
The FDA “black box” warning on antidepressant suicide risk in young adults: More harm than benefits?
The decision made in the year 2004 by the U.S. Food and Drug Administration (FDA) to require a boxed warning on antidepressants regarding the risk of suicidality in young adults still represents a matter of controversy. The FDA warning was grounded on industry-sponsored trials carried one decade ago or earlier. However, within the past decade, an increasing number of reports have questioned the actual validity of the FDA warning, especially considering a decline in the prescription of the antidepressant drugs associated with an increase in the rate of suicidal events among people with severe depression. The present report provides an overview of the FDA black box warning, also documenting two Major Depressive Disorder patients whose refusal to undergo a pharmacological antidepressant treatment possibly led to an increased risk for suicidal behaviors. The concerns raised by the FDA black box warning need to be considered in real-world clinical practice, stating the associated clinical and public health implications
Liquid crystal anchoring transitions on aligning substrates processed by plasma beam
We observe a sequence of the anchoring transitions in nematic liquid crystals
(NLC) sandwiched between the hydrophobic polyimide substrates treated with the
plasma beam. There is a pronounced continuous transition from homeotropic to
low tilted (nearly planar) alignment with the easy axis parallel to the
incidence plane of the plasma beam (the zenithal transition) that takes place
as the exposure dose increases. In NLC with positive dielectric anisotropy, a
further increase in the exposure dose results in in-plane reorientation of the
easy axis by 90 degrees (the azimuthal transition). This transition occurs
through the two-fold degenerated alignment characteristic for the second order
anchoring transitions. In contrast to critical behavior of anchoring, the
contact angle of NLC and water on the treated substrates monotonically declines
with the exposure dose. It follows that the surface concentration of
hydrophobic chains decreases continuously. The anchoring transitions under
consideration are qualitatively interpreted by using a simple phenomenological
model of competing easy axes which is studied by analyzing anchoring diagrams
of the generalized polar and non-polar anchoring models.Comment: revtex4, 18 pages, 10 figure
Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry
We study both theoretically and experimentally switching dynamics in surface
stabilized ferroelectric liquid crystal cells with asymmetric boundary
conditions. In these cells the bounding surfaces are treated differently to
produce asymmetry in their anchoring properties. Our electro-optic measurements
of the switching voltage thresholds that are determined by the peaks of the
reversal polarization current reveal the frequency dependent shift of the
hysteresis loop. We examine the predictions of the uniform dynamical model with
the anchoring energy taken into account. It is found that the asymmetry effects
are dominated by the polar contribution to the anchoring energy. Frequency
dependence of the voltage thresholds is studied by analyzing the properties of
time-periodic solutions to the dynamical equation (cycles). For this purpose,
we apply the method that uses the parameterized half-period mappings for the
approximate model and relate the cycles to the fixed points of the composition
of two half-period mappings. The cycles are found to be unstable and can only
be formed when the driving frequency is lower than its critical value. The
polar anchoring parameter is estimated by making a comparison between the
results of modelling and the experimental data for the shift vs frequency
curve. For a double-well potential considered as a deformation of the
Rapini-Papoular potential, the branch of stable cycles emerges in the low
frequency region separated by the gap from the high frequency interval for
unstable cycles.Comment: 35 pages, 15 figure
External and intrinsic anchoring in nematic liquid crystals: A Monte Carlo study
We present a Monte Carlo study of external surface anchoring in nematic cells
with partially disordered solid substrates, as well as of intrinsic anchoring
at free nematic interfaces. The simulations are based on the simple hexagonal
lattice model with a spatially anisotropic intermolecular potential. We
estimate the corresponding extrapolation length by imposing an elastic
deformation in a hybrid cell-like nematic sample. Our estimates for
increase with increasing surface disorder and are essentially
temperature--independent. Experimental values of are approached only when
both the coupling of nematic molecules with the substrate and the anisotropy of
nematic--nematic interactions are weak.Comment: Revisions primarily in section I
Constant-angle surfaces in liquid crystals
We discuss some properties of surfaces in R3 whose unit normal has constant angle with an assigned direction field. The constant angle condition can be rewritten as an Hamilton-Jacobi equation correlating the surface and the direction field. We focus on examples motivated by the physics of interfaces in liquid crystals and of layered fluids, and discuss the properties of the constant-angle surfaces when the direction field is singular along a line (disclination) or at a point (hedgehog defect
Nanotechnology-Assisted Cell Tracking
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra-and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP–cell interaction. This review provides a detailed overview of the available technologies focusing on cell–NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health
Geometrically-controlled twist transitions in nematic cells
We study geometrically-controlled twist transitions of a nematic confined
between a sinusoidal grating and a flat substrate. In these cells the
transition to the twisted state is driven by surface effects. We have
identified the mechanisms responsible for the transition analytically and used
exact numerical calculations to study the range of surface parameters where the
twist instability occurs. Close to these values the cell operates under minimal
external fields or temperature variations
- …