10 research outputs found

    Étude des réponses de défense mises en place chez la plante en réaction à la suppression de l'ARN d'interférence

    Get PDF
    Les plantes, comme tous les êtres vivants, subissent les assauts de différents agents pathogènes. Elles doivent donc entre autres se protéger des microbes et, pour ce faire, déploient deux mécanismes immunitaires actifs : la reconnaissance des éliciteurs et l’interférence à l’ARN (ARNi). Dans le cadre de la reconnaissance des éliciteurs, il y a premièrement l’immunité induite par les PAMP (PTI). Cette immunité de faible envergure permet à la plante de se protéger de la plupart des microbes indésirables. Afin de surpasser cette PTI, un pathogène bien outillé pour infecter une plante déploie des facteurs de virulence nommés effecteurs. Dans ce cas, pour se défendre, la plante devra arborer un gène de résistance dominant qui produira une protéine de résistance. Cette protéine reconnaitra de manière spécifique l’effecteur du pathogène et mettra en place une réponse de défense hautement efficace, l’immunité induite par un effecteur (ETI). Le deuxième mécanisme immunitaire, l’ARNi, est un mécanisme principalement antiviral qui permet à la plante de cibler les génomes viraux de manière séquence spécifique. À l’image de la PTI, les virus ont évolué afin de contourner l’ARNi en produisant des protéines spécialisées qui altèrent le fonctionnement de l’ARNi. C’est ce que l’on nomme des suppresseurs viraux de l’ARNi ou VSR. J’ai démontré durant ma thèse que la protéine P19, un VSR qui séquestre les petits ARN (siARN), était reconnue chez certains cultivars de tabac. Cette reconnaissance induit une réponse de type ETI. Cette réponse, nécessitant l’action conjointe de l’acide salicylique et de l’éthylène, est caractérisée par la production de protéines reliées à la pathogénèse et par la mise en place d’une réaction hypersensible. Cette réponse de défense est si efficace que, dans le cadre d’une infection virale, il n’y a pas de lésion macroscopique et microscopique. Cette situation se nomme la résistance extrême. Qui plus est, cette réponse de défense nécessite la capacité de liaison de la P19 à un petit ARN. Mes travaux ont aussi démontré l’implication de certaines protéines clés de la machinerie de l’ARNi dans la mise en place de la réponse de défense contre les VSR. La plante pourrait donc percevoir les dommages causés par les VSR à la machinerie de l’ARNi via des protéines clés de ce mécanisme. Ces recherches à terme permettrons de mieux documenter le système immunitaire des plantes, ce qui permettra par la ii suite de mieux sélectionner les cultivars mis en culture et de diminuer l’impact des pathogènes sur les cultures tout en réduisant l’utilisation des pesticides

    Étude des réponses de défense mises en place chez la plante en réaction à la suppression de l'ARN d'interférence

    No full text
    Les plantes, comme tous les êtres vivants, subissent les assauts de différents agents pathogènes. Elles doivent donc entre autres se protéger des microbes et, pour ce faire, déploient deux mécanismes immunitaires actifs : la reconnaissance des éliciteurs et l’interférence à l’ARN (ARNi). Dans le cadre de la reconnaissance des éliciteurs, il y a premièrement l’immunité induite par les PAMP (PTI). Cette immunité de faible envergure permet à la plante de se protéger de la plupart des microbes indésirables. Afin de surpasser cette PTI, un pathogène bien outillé pour infecter une plante déploie des facteurs de virulence nommés effecteurs. Dans ce cas, pour se défendre, la plante devra arborer un gène de résistance dominant qui produira une protéine de résistance. Cette protéine reconnaitra de manière spécifique l’effecteur du pathogène et mettra en place une réponse de défense hautement efficace, l’immunité induite par un effecteur (ETI). Le deuxième mécanisme immunitaire, l’ARNi, est un mécanisme principalement antiviral qui permet à la plante de cibler les génomes viraux de manière séquence spécifique. À l’image de la PTI, les virus ont évolué afin de contourner l’ARNi en produisant des protéines spécialisées qui altèrent le fonctionnement de l’ARNi. C’est ce que l’on nomme des suppresseurs viraux de l’ARNi ou VSR. J’ai démontré durant ma thèse que la protéine P19, un VSR qui séquestre les petits ARN (siARN), était reconnue chez certains cultivars de tabac. Cette reconnaissance induit une réponse de type ETI. Cette réponse, nécessitant l’action conjointe de l’acide salicylique et de l’éthylène, est caractérisée par la production de protéines reliées à la pathogénèse et par la mise en place d’une réaction hypersensible. Cette réponse de défense est si efficace que, dans le cadre d’une infection virale, il n’y a pas de lésion macroscopique et microscopique. Cette situation se nomme la résistance extrême. Qui plus est, cette réponse de défense nécessite la capacité de liaison de la P19 à un petit ARN. Mes travaux ont aussi démontré l’implication de certaines protéines clés de la machinerie de l’ARNi dans la mise en place de la réponse de défense contre les VSR. La plante pourrait donc percevoir les dommages causés par les VSR à la machinerie de l’ARNi via des protéines clés de ce mécanisme. Ces recherches à terme permettrons de mieux documenter le système immunitaire des plantes, ce qui permettra par la ii suite de mieux sélectionner les cultivars mis en culture et de diminuer l’impact des pathogènes sur les cultures tout en réduisant l’utilisation des pesticides

    Salicylic acid and ethylene are required for extreme resistance induced by P19 against TBSV.

    No full text
    <p>(<b>A</b>) Leaves of SA-deficient and ethylene-insensitive plants, or their corresponding WT counterparts, were infiltrated with <i>Agrobacterium tumefaciens</i> expressing TBSV-GFP. Leaves were observed under optical light and GFP fluorescence was visualized under UV at 5 dpi. (<b>B</b>) Western analysis was conducted to detect TBSV-GFP accumulation in the infiltrated leaves depicted in (A), using an anti-GFP antibody. Ponceau staining of the membrane is shown to demonstrate equal protein loading. (<b>C</b>) <i>A. tumefaciens</i> expressing P19 triggers an HR response is all depicted genotypes at 5 dpi. Experiments were repeated three times and showed similar results.</p

    DEX::P19 transgenic plants display defense responses following DEX application.

    No full text
    <p>(<b>A–B</b>) Leaves of five week old DEX::P19 transgenic and wild type plants (<i>N. tabacum</i> cv. Xanthi) were sprayed with DEX and the kinetics of P19 accumulation at transcript (A) and protein (B) levels was subsequently analyzed by qPCR and Western analysis, respectively. Actin was used as an internal control. (<b>C</b>) DEX::P19 transgenic or wild type plants were sprayed with DEX, and appearance of HR was assessed 5 days post-DEX application. We observed two and sometimes three bands for P19 dimers. These additional bands appear when P19 is expressed in <i>N. tabacum</i> but not in <i>N. benthamiana</i>. We believe that these additional bands are due to post-translational regulation of P19 by <i>N. tabacum</i>; this regulation might have a biological significance but evidence of this is not known yet. (<b>D</b>) PR protein accumulation at 0, 1 and 2 days post DEX application in wild type and DEX::P19 transgenic lines. Western analysis was conducted using anti-PR1, -PR2 and -PR3 antibodies. Coomassie or ponceau staining of the same extracts is shown to demonstrate equal protein loading. Experiments were repeated three times and showed similar results.</p

    Binding of small RNAs is mandatory for induction of plant immune responses by P19.

    No full text
    <p>(<b>A–B</b>) Leaves of five week old Dex::P19, Dex::P19W39-42R transgenic lines (<i>N. tabacum</i> cv. Xanthi) were sprayed with DEX and the kinetics of P19W39-42R accumulation at transcript (A) and protein (B) levels was analysed by qPCR and Western analysis, respectively. Actin was used as an internal control. (<b>C</b>) The transgenic lines described above were sprayed with DEX and appearance of an HR was assessed 5 day post-DEX application. (<b>D</b>) PR proteins accumulation at 0, 1 and 2 days post DEX application in Dex::P19 and Dex::P19W39-42R transgenic lines. Western analysis was conducted using anti-PR1, -PR2 and -PR3 antibodies. Coomassie or ponceau staining of the same extracts is shown to demonstrate equal protein loading. Experiments were repeated three times and showed similar results.</p

    Differential effects of co-expressed VSRs on P19 siRNA-binding capacity.

    No full text
    <p>(<b>A</b>) RNA gel blot analysis of GF siRNA accumulation (@GF) in total RNA and HA immunoprecipitated fractions from <i>Nicotiana benthamiana</i> infiltrated leaves expressing HA-tagged P15, P19 or P21 VSRs, either alone (-) or in combination with untagged VSRs. Ethidium bromide staining of ribosomal RNA (rRNA) is used as loading control. (<b>B</b>) Protein blot analysis of HA-tagged VSRs accumulation (@HA) in total (input) or immunoprecipitated fractions (IP@HA) of the samples described in (A). Coomassie staining of the membrane was used to verify equal loading after western blotting. EV: empty vector. Experiments were repeated three times and gave similar results.</p
    corecore