7 research outputs found

    Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity

    Get PDF
    In this study the role of cytochrome P450 2D (CYP2D) in the pharmacokinetic/pharmacodynamic relationship of (+)-tramadol [(+)-T] has been explored in rats. Male Wistar rats were infused with (+)-T in the absence of and during pretreatment with a reversible CYP2D inhibitor quinine (Q), determining plasma concentrations of Q, (+)-T, and (+)-O-demethyltramadol [(+)-M1], and measuring antinociception. Pharmacokinetics of (+)-M1, but not (+)-T, was affected by Q pretreatment: early after the start of (+)-T infusion, levels of (+)-M1 were significantly lower (P < 0.05). However, at later times during Q infusion those levels increased continuously, exceeding the values found in animals that did not receive the inhibitor. These results suggest that CYP2D is involved in the formation and elimination of (+)-M1. In fact, results from another experiment where (+)-M1 was given in the presence and in absence of Q showed that (+)-M1 elimination clearance (CL(ME0)) was significantly lower (P < 0.05) in animals receiving Q. Inhibition of both (+)-M1 formation clearance (CL(M10)) and CL(ME0) were modeled by an inhibitory E(MAX) model, and the estimates (relative standard error) of the maximum degree of inhibition (E(MAX)) and IC(50), plasma concentration of Q eliciting half of E(MAX) for CL(M10) and CL(ME0), were 0.94 (0.04), 97 (0.51) ng/ml, and 48 (0.42) ng/ml, respectively. The modeling of the time course of antinociception showed that the contribution of (+)-T was negligible and (+)-M1 was responsible for the observed effects, which depend linearly on (+)-M1 effect site concentrations. Therefore, the CYP2D activity is a major determinant of the antinociception elicited after (+)-T administration

    Experimental measurement of the quality factor of a Fabry-P\'erot open-cavity axion haloscope

    Full text link
    The axion is a hypothetical boson arising from the most natural solution to the problem of charge and parity symmetry in the strong nuclear force. Moreover, this pseudoscalar emerges as a dark matter candidate in a parameter space extending several decades in mass. The Dark-photons \& Axion-Like particles Interferometer (DALI) is a proposal to search for axion dark matter in a range that remains under-examined. Currently in a design and prototyping phase, this haloscope is a multilayer Fabry-P\'erot interferometer. A proof-of-principle experiment is performed to observe the resonance in a prototype. The test unveils a quality factor per open cavity of a few hundred over a bandwidth of the order of dozens of megahertz. The result elucidates a physics potential to find the, so far elusive, axion, in a sector which can simultaneously solve the symmetry problem in the strong interaction and the enigma of dark matter.Comment: 5 pages, 6 figure

    Modeling of the Sedative and Airway Obstruction Effects of Propofol in Patients with Parkinson Disease undergoing Stereotactic Surgery

    Get PDF
    BACKGROUND: Functional stereotactic surgery requires careful titration of sedation since patients with Parkinson disease need to be rapidly awakened for testing. This study reports a population pharmacodynamic model of propofol sedation and airway obstruction in the Parkinson disease population. METHODS: Twenty-one patients with advanced Parkinson disease undergoing functional stereotactic surgery were included in the study and received propofol target-controlled infusion to achieve an initial steady state concentration of 1 microg/ml. Sedation was measured using the Ramsay Sedation Scale. Airway obstruction was measured using a four-category score. Blood samples were drawn for propofol measurement. Individual pharmacokinetic profiles were constructed nonparametrically using linear interpolation. Time course of sedation and respiratory effects were described with population pharmacodynamic models using NONMEM. The probability (P) of a given level of sedation or airway obstruction was related to the estimated effect-site concentration of propofol (Ce) using a logistic regression model. RESULTS: The concentrations predicted by the target-controlled infusion system generally exceeded the measured concentrations. The estimates of C(50) for Ramsay scores 3, 4, and 5 were 0.1, 1.02, and 2.28 microg/ml, respectively. For airway obstruction scores 2 and 3, the estimates of C(50) were 0.32 and 2.98 microg/ml, respectively. Estimates of k(e0) were 0.24 and 0.5 1/min for the sedation and respiratory effects, respectively. CONCLUSIONS: The pharmacokinetic behavior of propofol in patients with Parkinson disease differs with respect to the population from which the model used by the target-controlled infusion device was developed. Based on the results from the final models, a typical steady state plasma propofol concentration of 0.35 microg/ml eliciting a sedation score of 3 with only minimal, if any, airway obstruction has been defined as the therapeutic target

    Pharmacokinetic/Pharmacodynamic Modeling of Antipyretic and Anti-Inflammatory Effects of Naproxen in the Rat

    Get PDF
    Pharmacokinetic/pharmacodynamic modeling was used to characterize the antipyretic and anti-inflammatory effects of naproxen in rats. An indirect response model was used to describe the antipyretic effects of naproxen after short intravenous infusions. The model assumes that basal temperature (T(a)) is maintained by the balance of fever mediators given by a constant (zero order) rate of synthesis (K(syn)), and a first order rate of degradation (K(out)). After an intraperitoneal injection of lipopolysaccharide, the change in T(a) was modeled assuming an increase in fever mediators described as an input rate function [IR(t)] estimated nonparametrically. An inhibitory E(max) model adequately described the inhibition of IR(t) by naproxen. A more complex model was used to describe the anti-inflammatory response of oral naproxen in the carrageenin-induced edema model. Before carrageenin injection, physiological conditions are maintained by a balance of inflammation mediators given by K(syn) and K(out) (see above). After carrageenin injection, the additional synthesis of mediators is described by IR(t) (see above). Such mediators induced an inflammatory process, which is governed by a first order rate constant (K(IN)) that can be inhibited by the presence of naproxen in plasma. The sigmoidal E(max) model also well described the inhibition of K(IN) by naproxen. Estimates for IC(50) [concentration of naproxen in plasma eliciting half of maximum inhibition of IR(t) or K(IN)] were 4.24 and 4.13 microg/ml, for the antipyretic and anti-inflammatory effects, respectively

    Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity

    No full text
    In this study the role of cytochrome P450 2D (CYP2D) in the pharmacokinetic/pharmacodynamic relationship of (+)-tramadol [(+)-T] has been explored in rats. Male Wistar rats were infused with (+)-T in the absence of and during pretreatment with a reversible CYP2D inhibitor quinine (Q), determining plasma concentrations of Q, (+)-T, and (+)-O-demethyltramadol [(+)-M1], and measuring antinociception. Pharmacokinetics of (+)-M1, but not (+)-T, was affected by Q pretreatment: early after the start of (+)-T infusion, levels of (+)-M1 were significantly lower (P < 0.05). However, at later times during Q infusion those levels increased continuously, exceeding the values found in animals that did not receive the inhibitor. These results suggest that CYP2D is involved in the formation and elimination of (+)-M1. In fact, results from another experiment where (+)-M1 was given in the presence and in absence of Q showed that (+)-M1 elimination clearance (CL(ME0)) was significantly lower (P < 0.05) in animals receiving Q. Inhibition of both (+)-M1 formation clearance (CL(M10)) and CL(ME0) were modeled by an inhibitory E(MAX) model, and the estimates (relative standard error) of the maximum degree of inhibition (E(MAX)) and IC(50), plasma concentration of Q eliciting half of E(MAX) for CL(M10) and CL(ME0), were 0.94 (0.04), 97 (0.51) ng/ml, and 48 (0.42) ng/ml, respectively. The modeling of the time course of antinociception showed that the contribution of (+)-T was negligible and (+)-M1 was responsible for the observed effects, which depend linearly on (+)-M1 effect site concentrations. Therefore, the CYP2D activity is a major determinant of the antinociception elicited after (+)-T administration

    Modeling of the Sedative and Airway Obstruction Effects of Propofol in Patients with Parkinson Disease undergoing Stereotactic Surgery

    No full text
    BACKGROUND: Functional stereotactic surgery requires careful titration of sedation since patients with Parkinson disease need to be rapidly awakened for testing. This study reports a population pharmacodynamic model of propofol sedation and airway obstruction in the Parkinson disease population. METHODS: Twenty-one patients with advanced Parkinson disease undergoing functional stereotactic surgery were included in the study and received propofol target-controlled infusion to achieve an initial steady state concentration of 1 microg/ml. Sedation was measured using the Ramsay Sedation Scale. Airway obstruction was measured using a four-category score. Blood samples were drawn for propofol measurement. Individual pharmacokinetic profiles were constructed nonparametrically using linear interpolation. Time course of sedation and respiratory effects were described with population pharmacodynamic models using NONMEM. The probability (P) of a given level of sedation or airway obstruction was related to the estimated effect-site concentration of propofol (Ce) using a logistic regression model. RESULTS: The concentrations predicted by the target-controlled infusion system generally exceeded the measured concentrations. The estimates of C(50) for Ramsay scores 3, 4, and 5 were 0.1, 1.02, and 2.28 microg/ml, respectively. For airway obstruction scores 2 and 3, the estimates of C(50) were 0.32 and 2.98 microg/ml, respectively. Estimates of k(e0) were 0.24 and 0.5 1/min for the sedation and respiratory effects, respectively. CONCLUSIONS: The pharmacokinetic behavior of propofol in patients with Parkinson disease differs with respect to the population from which the model used by the target-controlled infusion device was developed. Based on the results from the final models, a typical steady state plasma propofol concentration of 0.35 microg/ml eliciting a sedation score of 3 with only minimal, if any, airway obstruction has been defined as the therapeutic target
    corecore