4 research outputs found

    Retrospective study on the toxicity induced by stereotactic body radiotherapy: overview of the reunion experience on prostate cancer in elderly patients

    Get PDF
    IntroductionProstate cancer is the fourth most commonly diagnosed cancer among men worldwide. Various tools are used to manage disease such as conventional radiotherapy. However, it has been demonstrated that large prostate volumes were often associated with higher rates of genitourinary and gastrointestinal toxicities. Currently, the improvements in radiotherapy technology have led to the development of stereotactic body radiotherapy, which delivers higher and much more accurate radiation doses. In order to complete literature data about short-term outcome and short-term toxic effects of stereotactic body radiotherapy, we aimed to share our experience about gastrointestinal and genitourinary toxicities associated with stereotactic body radiotherapy in prostate cancer in patients over 70 years old.MethodsWe retrospectively reviewed the medical records of elderly patients with prostate cancer treated between 2021 and 2022. The elderly patients were treated with a non-coplanar robotic stereotactic body radiotherapy platform using real-time tracking of implanted fiducials. The prostate, with or without part of the seminal vesicles, was treated with a total dose of 36.25 Gy delivered in five fractions, each fraction being administered every other day.ResultsWe analyzed a total of 80 elderly patients, comprising 38 low-, 37 intermediate- and 5 high-risk patients. The median follow-up duration was 12 months. We did not observe biochemical/clinical recurrence, distant metastasis, or death. Grade 2 acute genitourinary toxicity was observed in 9 patients (11.25%) and Grade 2 acute gastrointestinal toxicity in 4 patients (5.0%). We did not observe any grade 3 or more acute or late toxicities.ConclusionOver the follow-up period, we noted a low frequency of gastrointestinal and genitourinary toxicities induced by stereotactic body radiotherapy in the context of prostate cancer in elderly patients. Therefore, stereotactic body radiotherapy seems to represent a promising treatment option for elderly patients, with acceptable acute toxicity

    Antidepressive effects of targeting ELK-1 signal transduction

    No full text
    International audienceDepression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted2-4. The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation5-7, but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1

    Antidepressive effects of targeting ELK-1 signal transduction

    No full text
    International audienceDepression, a devastating psychiatric disorder, is a leadingcause of disability worldwide. Current antidepressants addressspecific symptoms of the disease, but there is vast roomfor improvement1. In this respect, new compounds that actbeyond classical antidepressants to target signal transductionpathways governing synaptic plasticity and cellular resilienceare highly warranted2–4. The extracellular signal–regulatedkinase (ERK) pathway is implicated in mood regulation5–7, butits pleiotropic functions and lack of target specificity prohibitoptimal drug development. Here, we identified the transcriptionfactor ELK-1, an ERK downstream partner8, as a specificsignaling module in the pathophysiology and treatment ofdepression that can be targeted independently of ERK. ELK1mRNA was upregulated in postmortem hippocampal tissuesfrom depressed suicides; in blood samples from depressedindividuals, failure to reduce ELK1 expression was associatedwith resistance to treatment. In mice, hippocampal ELK-1 overexpressionper se produced depressive behaviors; conversely,the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states inducedby stress. Our work stresses the importance of target selectivityfor a successful approach for signal-transduction-basedantidepressants, singles out ELK-1 as a depression-relevanttransducer downstream of ERK and brings proof-of-conceptevidence for the druggability of ELK-1
    corecore