37,935 research outputs found
Automated Screening for Three Inborn Metabolic Disorders: A Pilot Study
Background: Inborn metabolic disorders (IMDs) form a large group of rare, but often serious, metabolic disorders. Aims: Our objective was to construct a decision tree, based on classification algorithm for the data on three metabolic disorders, enabling us to take decisions on the screening and clinical diagnosis of a patient. Settings and Design: A non-incremental concept learning classification algorithm was applied to a set of patient data and the procedure followed to obtain a decision on a patient’s disorder. Materials and Methods: Initially a training set containing 13 cases was investigated for three inborn errors of metabolism. Results: A total of thirty test cases were investigated for the three inborn errors of metabolism. The program identified 10 cases with galactosemia, another 10 cases with fructosemia and the remaining 10 with propionic acidemia. The program successfully identified all the 30 cases. Conclusions: This kind of decision support systems can help the healthcare delivery personnel immensely for early screening of IMDs
Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device
In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase
Charge order suppression and antiferromagnetic to ferromagnetic switch over in Pr_0.5Ca_0.5MnO_3 nanowires
We have prepared crystalline nanowires (diameter ~ 50 nm, length ~ a few
microns) of the charge ordering manganite Pr_0.5Ca_0.5Mn_O3 using a low
reaction temperature hydrothermal method and characterized them using X-ray
diffraction, transmission electron microscopy, SQUID magnetometry and electron
magnetic resonance measurements. While the bulk sample shows a charge ordering
transition at 245 K and an antiferromagnetic transition at 175 K, SQUID
magnetometry and electron magnetic resonance experiments reveal that in the
nanowires phase, a ferromagnetic transition occurs at ~ 105 K. Further, the
antiferromagnetic transition disappears and the charge ordering transition is
suppressed. This result is particularly significant since the charge order in
Pr_0.5Ca_0.5MnO_3 is known to be very robust, magnetic fields as high as 27 T
being needed to melt it.Comment: 12 pages including 4 figures. submitted to Applied Physics Letter
The effects of random path fluctuations on the accuracy of laser ranging systems
The precision of satellite ranging systems, limited in part by atmospheric refraction and scattering, is examined. The effects of atmospheric turbulence on the accuracy of single color and multicolor ranging systems is discussed. The statistical characteristics of the random path length fluctuations induced by turbulence are examined. Correlation and structure functions are derived using several proposed models for the variations of the optical path length. For single color systems it is shown that the random path length fluctuations can limit the accuracy of a range measurement to a few centimeters. Two color systems can partially correct for the random path fluctuations so that in most cases their accuracy is limited to a few millimeters. However, at low elevation angles and over long horizontal paths two color systems can also have errors approaching a few centimeters
THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks
Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for
patient health monitoring. New research is being done to take the technology to
the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is
the main cause of player's performance degradation. This type of fatigue can be
measured by sensing the accumulation of lactic acid in muscles. Excess of
lactic acid makes muscles feel lethargic. Keeping this in mind we propose a
protocol \underline{TH}reshold based \underline{E}nergy-efficient
\underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using
WBASN. In THE-FAME protocol, a composite parameter has been used that consists
of a threshold parameter for lactic acid accumulation and a parameter for
measuring distance covered by a particular player. When any parameters's value
in this composite parameter shows an increase beyond threshold, the players is
declared to be in a fatigue state. The size of battery and sensor should be
very small for the sake of players' best performance. These sensor nodes,
implanted inside player's body, are made energy efficient by using multiple
sinks instead of a single sink. Matlab simulation results show the
effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs
The nodes in wireless sensor networks (WSNs) contain limited energy
resources, which are needed to transmit data to base station (BS). Routing
protocols are designed to reduce the energy consumption. Clustering algorithms
are best in this aspect. Such clustering algorithms increase the stability and
lifetime of the network. However, every routing protocol is not suitable for
heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy
efficient protocol for wireless sensor networks. AM-DisCNT uses circular
deployment for even consumption of energy in entire wireless sensor network.
Cluster-head selection is on the basis of energy. Highest energy node becomes
CH for that round. Energy is again compared in the next round to check the
highest energy node of that round. The simulation results show that AM-DisCNT
performs better than the existing heterogeneous protocols on the basis of
network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
Distance Aware Relaying Energy-efficient: DARE to Monitor Patients in Multi-hop Body Area Sensor Networks
In recent years, interests in the applications of Wireless Body Area Sensor
Network (WBASN) is noticeably developed. WBASN is playing a significant role to
get the real time and precise data with reduced level of energy consumption. It
comprises of tiny, lightweight and energy restricted sensors, placed in/on the
human body, to monitor any ambiguity in body organs and measure various
biomedical parameters. In this study, a protocol named Distance Aware Relaying
Energy-efficient (DARE) to monitor patients in multi-hop Body Area Sensor
Networks (BASNs) is proposed. The protocol operates by investigating the ward
of a hospital comprising of eight patients, under different topologies by
positioning the sink at different locations or making it static or mobile.
Seven sensors are attached to each patient, measuring different parameters of
Electrocardiogram (ECG), pulse rate, heart rate, temperature level, glucose
level, toxins level and motion. To reduce the energy consumption, these sensors
communicate with the sink via an on-body relay, affixed on the chest of each
patient. The body relay possesses higher energy resources as compared to the
body sensors as, they perform aggregation and relaying of data to the sink
node. A comparison is also conducted conducted with another protocol of BAN
named, Mobility-supporting Adaptive Threshold-based Thermal-aware
Energy-efficient Multi-hop ProTocol (M-ATTEMPT). The simulation results show
that, the proposed protocol achieves increased network lifetime and efficiently
reduces the energy consumption, in relative to M-ATTEMPT protocol.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects
Investigations of the magnetic properties of graphenes prepared by different
methods reveal that dominant ferromagnetic interactions coexist along with
antiferromagnetic interactions in all the samples. Thus, all the graphene
samples exhibit room-temperature magnetic hysteresis. The magnetic properties
depend on the number of layers and the sample area, small values of both
favoring larger magnetization. Molecular charge-transfer affects the magnetic
properties of graphene, interaction with a donor molecule such as
tetrathiafulvalene having greater effect than an electron-withdrawing molecule
such as tetracyanoethyleneComment: 16 pges, 5 figure
On autonomous terrain model acquistion by a mobile robot
The following problem is considered: A point robot is placed in a terrain populated by an unknown number of polyhedral obstacles of varied sizes and locations in two/three dimensions. The robot is equipped with a sensor capable of detecting all the obstacle vertices and edges that are visible from the present location of the robot. The robot is required to autonomously navigate and build the complete terrain model using the sensor information. It is established that the necessary number of scanning operations needed for complete terrain model acquisition by any algorithm that is based on scan from vertices strategy is given by the summation of i = 1 (sup n) N(O sub i)-n and summation of i = 1 (sup n) N(O sub i)-2n in two- and three-dimensional terrains respectively, where O = (O sub 1, O sub 2,....O sub n) set of the obstacles in the terrain, and N(O sub i) is the number of vertices of the obstacle O sub i
Women Reproductive Rights in India: Prospective Future.
Reproductive rights were established as a subset of the human rights. Parents have a basic human right to determine freely and responsibly the number and the spacing of their children. Issues regarding the reproductive rights are vigorously contested, regardless of the population’s socioeconomic level, religion or culture. Following review article discusses reproductive rights with respect to Indian context focusing on socio economic and cultural aspects. Also discusses sensitization of government and judicial agencies in protecting the reproductive rights with special focus on the protecting the reproductive rights of people with disability (mental illness and mental retardation)
- …