46,311 research outputs found

    Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    Get PDF
    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack

    The star formation history of damped Lyman alpha absorbers

    Full text link
    The local power law relationship between the surface densities of neutral hydrogen gas and star formation rate (SFR) can be used to explore the SFR properties of damped Lyman alpha (DLA) systems at higher redshift. We find that while the SFR densities for DLA systems are consistent with luminous star forming galaxies at redshifts below z~0.6, at higher redshifts their SFR density is too low for them to provide a significant contribution to the cosmic star formation history (SFH). This suggests that the majority of DLAs may be a distinct population from the Lyman break galaxies (LBGs) or submillimeter star-forming galaxies that together dominate the SFR density at high redshift. It is also possible that the DLAs do not trace the bulk of the neutral gas at high redshift. The metallicity properties of DLAs are consistent with this interpretation. The DLAs show a metal mass density lower by two orders of magnitude at all redshifts than that inferred from the SFH of the universe. These results are consistent with DLAs being dominated by low mass systems having low SFRs or a late onset of star formation, similar to the star formation histories of dwarf galaxies in the local universe.Comment: 9 pages, 5 figures, accepted for publication in Ap

    AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs

    Full text link
    The nodes in wireless sensor networks (WSNs) contain limited energy resources, which are needed to transmit data to base station (BS). Routing protocols are designed to reduce the energy consumption. Clustering algorithms are best in this aspect. Such clustering algorithms increase the stability and lifetime of the network. However, every routing protocol is not suitable for heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy efficient protocol for wireless sensor networks. AM-DisCNT uses circular deployment for even consumption of energy in entire wireless sensor network. Cluster-head selection is on the basis of energy. Highest energy node becomes CH for that round. Energy is again compared in the next round to check the highest energy node of that round. The simulation results show that AM-DisCNT performs better than the existing heterogeneous protocols on the basis of network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Geometry of good sets in n-fold Cartesian product

    Get PDF
    We propose here a multidimensional generalisation of the notion of link introduced in our previous papers and we discuss some consequences for simplicial measures and sums of function algebras.Comment: 17 pages, no figures, no table

    Detection of a Series of X-ray Dips Associated with a Radio Flare in GRS 1915+105

    Get PDF
    We report the detection of a series of X-ray dips in the Galactic black hole candidate GRS 1915+105 during 1999 June 6-17 from observations carried out with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment on board the Indian satellite IRS-P3. The observations were made after the source made a transition from a steady low-hard state to a chaotic state which occuered within a few hours. Dips of about 20-160 seconds duration are observed on most of the days. The X-ray emission outside the dips shows a QPO at ~ 4 Hz which has characteristics similar to the ubiquitous 0.5 - 10 Hz QPO seen during the low-hard state of the source. During the onset of dips this QPO is absent and also the energy spectrum is soft and the variability is low compared to the non-dip periods. These features gradually re-appear as the dip recovers. The onset of the occurrence of a large number of such dips followed the start of a huge radio flare of strength 0.48 Jy (at 2.25 GHz). We interpret these dips as the cause for mass ejection due to the evacuation of matter from an accretion disk around the black hole. We propose that a super-position of a large number of such dip events produces a huge radio jet in GRS 1915+105.Comment: 18 pages, 7 figures, Accepted for publication in Ap

    Inositol phosphatase SHIP1 is a primary target of miR-155

    Get PDF
    MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3′UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3′UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155−/− primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology

    Lattice Green's function for crystals containing a planar interface

    Full text link
    Flexible boundary condition methods couple an isolated defect to a harmonically responding medium through the bulk lattice Green's function; in the case of an interface, interfacial lattice Green's functions. We present a method to compute the lattice Green's function for a planar interface with arbitrary atomic interactions suited for the study of line defect/interface interactions. The interface is coupled to two different semi-infinite bulk regions, and the Green's function for interface-interface, bulk-interface and bulk-bulk interactions are computed individually. The elastic bicrystal Green's function and the bulk lattice Green's function give the interaction between bulk regions. We make use of partial Fourier transforms to treat in-plane periodicity. Direct inversion of the force constant matrix in the partial Fourier space provides the interface terms. The general method makes no assumptions about the atomic interactions or crystal orientations. We simulate a screw dislocation interacting with a (101ˉ2)(10\bar{1}2) twin boundary in Ti using flexible boundary conditions and compare with traditional fixed boundary conditions results. Flexible boundary conditions give the correct core structure with significantly less atoms required to relax by energy minimization. This highlights the applicability of flexible boundary conditions methods to modeling defect/interface interactions by \textit{ab initio} methods
    corecore