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Abstract. We propose here a multidimensional generalisation of the notion of link
introduced in our previous papers and we discuss some consequences for simplicial
measures and sums of function algebras.
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0. Introduction

LetX1, X2, . . . , X

n

be non-empty sets and let� = X1×X2×· · ·×X

n

be their Cartesian
product. For eachi, 1 ≤ i ≤ n, 5

i

will denote the canonical projection of� onto X

i

.
A subsetS ⊂ � is said to begood if every complex valued functionf on S is of the
form:

f (x1, x2, . . . , x

n

) = u1(x1) + u2(x2) + · · · + u

n

(x

n

), (x1, x2, . . . , x

n

) ∈ S,

for suitable functionsu1, u2, . . . , u

n

onX1, X2, . . . , X

n

respectively.
A necessary and sufficient condition for a subsetS of X1 × X2 × · · · × X

n

to be good
was derived in our paper [7] and some consequences for simplicial measures and sums of
algebras were discussed. Forn = 2 these questions are well-discussed in [1–3,5–7,10–
14,17]. The notion of a link or path between two points plays a crucial role in all these
papers. Forn > 2 a natural notion of link between two points ofS was so far not available,
a difficulty mentioned on p. 82 and 84 of [7]. So natural analogues of results forn = 2
were not available for the casen > 2. This paper attempts to remove this difficulty. Here
we define, forn ≥ 2, what we call full sets in terms of which a notion of geodesic between
two points of a good set is formulated. This allows us to prove some results on simplicial
measure and sums of algebras in terms of geodesics in analogy with the casen = 2. For
n = 2 a geodesic between two points is a link as defined in [3], and forn > 2 a geodesic
has nearly all the properties of this object. For question concerning sums of algebras for
n > 2 we refer to the papers [18,19] where the notions of uniformly separating families
and uniformly measure separating families are introduced and applied both for questions
of sums of algebras and in dimension theory, and to paper [16].
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1. Examples

(1) A singleton subset of� is always a good set. Also any subset of� no two points of
which have a coordinate in common is a good set.

(2) The subsetS = {(0, 0), (1, 0), (0, 1)} of {0, 1} × {0, 1} is a good set. For letf
be any function onS and letu1(0) be given an arbitrary value, sayc, and define
u2(0) = f (0, 0) − c. With u2(0) thus defined, we writeu1(1) = f (1, 0) − u2(0).
Finally we getu2(1) = f (1, 1) − u1(1). Clearlyu1 + u2 = f onS. Note that once
u(0) is fixed, the solution is unique.

(3) Let S ⊂ X1 × X2. Say that two points(x, y), (z, w) in S are linked if there
is a finite sequence(x1, y1), (x2, y2), . . . , (x

n

, y

n

) in S such that (i)(x1, y1) =

(x, y), (x

n

, y

n

) = (z, w), (ii) for each i, 1 ≤ i ≤ n − 1, exactly one of the two
inequalities holdsx

i

6= x

i+1, yi

6= y

i+1, (iii) if for any i, x
i

6= x

i+1 thenx

i+1 = x

i+2
and ify

i

6= y

i+1 theny

i+1 = y

i+2, 1 ≤ i ≤ n − 2. If (x, y) and(z, w) are linked we
write (x, y)L(z, w) and observe thatL is an equivalence relation. If there is only one
link between two points(x, y) and(z, w) ∈ S, then we say that(x, y) and(z, w) are
uniquely linked. We note thatS is good if and only if any two linked points inS are
uniquely linked. IfS is good andC is a set which meets each equivalence class of
L in exactly one point, then the solution ofu1(x1) + u2(x2) = f (x1, x2) is unique
once we prescribe the values ofu1 on51C (see [3]).

(4) The set{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1), . . . } where starting
at (0, 0, 0) one moves one unit at a time, first along thex-axis, then along they-
axis and then along thez-axis and continuing similarly with the next movement
along thex-axis, is a good set. For anyf on this set, the solution ofu1(x1) +

u2(x2)+u3(x3) = f (x1, x2, x3) is unique once we prescribe the values ofu1(0) and
u2(0).

(5) S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} is a good set in{0, 1}

3 while the set
S ∪ {(1, 1, 1)} is not a good set.

(6) S = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)} is a good set in{0, 1}

3. This example is
different from example 4 in that no two elements ofS differ from each other in only
one coordinate, yet for anyf , the solution ofu1(x1)+u2(x2)+u3(x3) = f (x1, x2, x3)

is unique once we prescribe the values ofu1(0) andu2(0).
(7) {(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 5, 9)} is a good set. For a givenf onS, the equation

u1(x1)+u2(x2)+u3(x3) = f (x1, x2, x3), (x1, x2, x3) ∈ S gives four linear equations
in nine variables. If we fix the values of some suitable five variables, then the solution
is unique, but not any choice of five variables would do.

(8) Leta
i

∈ X

i

, i = 1, 2, 3. Then

S = X1 × {a2} × {a3} ∪ {a1} × X2 × {a3} ∪ {a1} × {a2} × X3

is a good set inX1 × X2 × X3.
(9) The embedding of then-dimensional unit cubeEn into R

2n+1 obtained in Kol-
mogorov’s solution of Hilbert’s thirteenth problem [8] is a good set.

(10) If S is a good set inX1×X2 and(x0, y0) ∈ S thenU, V which satisfyu(x)+v(y) =

1
{(x0,y0)}(x, y), (x, y) ∈ S,u(x0) = 0 are necessarily bounded in absolute value by 1.

However, this can fail ifn > 2 as the following example, obtained jointly with Gowri
Navada, shows: Consider the set{(x0, y0, z0), (x1, y0, z0), (x0, y1, z0), (x1, y1, z1),
(x2, y0, z1), (x0, y2, z1), (x2, y2, z2),. . . , (x

n

, y

n

, z

n

), (x

n+1, y0, zn

), (x0, yn+1, zn

),
(x

n+1, yn+1, zn+1), . . . } in X×Y ×Z, whereX, Y , Z are infinite sets. This is a good
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set since each point admits a coordinate which does not appear as a coordinate of any
of the points preceding it. Further it is easily seen that the solutionU, V, W of

u(x) + v(y) + w(z) = 1
{(x0,y0,z0)}(x, y, z), (x, y, z) ∈ S,

satisfyingu(x0) = 0, v(y0) = 0, is given by,W(z0) = 1 and forn > 0, U(x

n

) =

V (y

n

) = −2n−1
, W(z

n

) = 2n.

2. Characterisation of good sets; consequences

Given any finitely many symbolst1, t2, . . . , t

k

with repetitionsallowed and given any
finitely many integersn1, n2, . . . , n

k

, we say that the formal sumn1t1 +n2t2 +· · ·+n

k

t

k

vanishes if for everyt
j

the sum of the coefficients oft
j

vanishes.

DEFINITION

An element(x1, x2, . . . , x

n

) of � will be denoted byEx. A non-empty finite subsetL =

{Ex1, Ex2, . . . , Ex

k

} of � is called aloop if there exist non-zero integersn1, n2, . . . , n

k

such
that the sum

∑

k

i=1 n

i

Ex

i

vanishes in the sense that the formal sum vanishes coordinatewise,
and no strictly smaller non-empty subset ofL has this property.

We haveS ⊂ � is good if and only if there are no loops inS. This characterisation of a
good set, proved in [7], implies:

(1) S is good if and only if every finite subset ofS is good,
(2) union of any directed family of good sets is a good set, where a family of sets is said

to be directed if given any two sets in the family there is a third set in the family which
includes both. In particular, any union of a linearly ordered (under inclusion) system
of good sets is a good set,

(3) in view of (2), by Zorn’s lemma, we conclude that every good set is contained in a
maximal good set, where a good subset in� is said to be maximal if it is not contained
in a strictly larger good subset of�.

Note that ifS ⊂ � is maximal then, for eachi,5
i

S = X

i

, for if X

i

−5

i

S is non-empty for
somei, and if Ex ∈ � hasith coordinate not in5

i

S, thenS∪{Ex} is a good set bigger thanS.

3. Full sets

The following refined notion of maximal set, called full set, will be crucial for our discus-
sion.

DEFINITION

A subsetS of � is said to be full ifS is a maximal good set in51S × 52S × · · · × 5

n

S.

Clearly every good setS is contained in a full good setS′ such that the canonical
projections ofS andS

′ on the coordinate spaces coincide.

Theorem 1. LetS ⊂ � be given. Assume that there existx

0
1 ∈ 51S, x

0
2 ∈ 52S, . . . , x

0
n−1

∈ 5

n−1S such that for allf : S → C the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S, (1)
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subject to

u1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 (2)

admits a unique solution. ThenS is full.

Proof. Before we proceed with the proof we remark that the solution is unique only in the
sense that the functionsu

i

|

5

i

S

, 1 ≤ i ≤ n, are uniquely determined and how any of theu

i

defined outsideX
i

− 5

i

S is immaterial.

ClearlyS is a good set since for allf : S → C, (1) admits a solution by assumption.
We show that under the given hypothesisS is full. If S is not full, then there existsEa =

(a1, a2, . . . , a

n

) in the Cartesian product of5
i

S, 1 ≤ i ≤ n, such thatS′

= S ∪ {Ea} is a
good set. Consider the functionf onS

′ which vanishes everywhere onS and equals one
at Ea. Let U

i

, 1 ≤ i ≤ n, be a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S

′

. (3)

Then the system of functions

V

i

= U

i

− U

i

(x

0
i

), 1 ≤ i ≤ n − 1, V

n

= U

n

+

n−1
∑

i=1

U

i

(x

0
i

),

is also a solution of (3). In particular, this system, when restricted toS, is the unique
solution of (1) subject to (2) for the identically null function onS (observe thatf vanishes
onS), whence we haveV

i

(x

i

) = 0, x

i

∈ 5

i

S, 1 ≤ i ≤ n. Sincea

i

∈ 5

i

S, 1 ≤ i ≤ n we
see that

∑

n

i=1 V

i

(a

i

) = 0 6= 1, which is a contradiction. SoS is full, and the theorem is
proved.

Theorem 2. LetS ⊂ � be full and fixx0
i

∈ 5

i

S, 1 ≤ i ≤ n − 1. Then the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ S, (4)

subject to

u1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 (5)

admits a unique solution which is necessarily the trivial solutionU

i

(x

i

) = 0, x

i

∈ 5

i

S,
1 ≤ i ≤ n.

Proof. We have to show that any solutionU1, U2, . . . , U

n

of (4) subject to (5) is necessarily
the trivial solutionU

i

(x

i

) = 0, x

i

∈ 5

i

S, 1 ≤ i ≤ n. If not there is a non-trivial solution
V

i

, 1 ≤ i ≤ n, of (4) along with (5), which means that there exists an elementEa =

(a1, a2, . . . , a

n

) ∈ S with at least one (hence two or more)V1(a1), V2(a2), . . . , V

n

(a

n

)

non-zero and
∑

n

i=1 V

i

(a

i

) = 0.
Without loss of generality assume thatV

n

(a

n

) 6= 0. Since
∑

n−1
i=1 V

i

(x

0
i

) + V

n

(a

n

) 6= 0,
E

b = (x

0
1, x

0
2, . . . , x

0
n−1, an

) /∈ S. Also E

b is in the Cartesian product of5
i

S, 1 ≤ i ≤ n.

ConsiderS′

= S ∪ {

E

b}. Note thatS′ andS have the same canonical projections on the
coordinate spaces. We show thatS

′ is a good set, conflicting with the fact thatS is full.
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To this end letf : S

′

→ C be given. Writef (

E

b) = k and letW1, W2, . . . , W

n

be a solu-
tion of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 which exists sinceS is good.

Write c =

k−W

n

(a

n

)

V

n

(a

n

)

. Then

R1 = W1 + cV1, R2 = W2 + cV2, . . . , R

n

= W

n

+ cV

n

is a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S

′

,

which shows thatS′ is a good set, a contradiction. The theorem is proved.

We can combine Theorems 1 and 2 as:

Theorem 3. A good setS ⊂ � is full if and only if for any choice ofx0
i

∈ 5

i

S, 1 ≤ i ≤

n − 1, the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ S,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 has a unique solution, namely

the trivial solution.

Note that in Theorem 3 the words ‘any choice’ can be replaced by ‘some choice’.

COROLLARY 1

LetS ⊂ � be given. ThenS is full if and only if for any choice ofx0
i

∈ 5

i

S, 1 ≤ i ≤ n−1,
for all complex valued functionsf onS, for all complexc1, c2, . . . , c

n−1, the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

subject tou1(x
0
1) = c1, u2(x

0
2) = c2, . . . , u

n−1(x
0
n−1) = c

n−1 has a unique solution.

Remark1. There is nothing special about the choice of the firstn − 1 coordinates
x

0
1, x

0
2, . . . , x

0
n−1 in the sense that we could just as well have chosen anyn−1 coordinates

x

i

∈ 5

i

S, i 6= i0, and modified the ‘boundary condition’ accordingly.

COROLLARY 2

LetS ⊂ � be full and letU1, U2, . . . , U

n

be a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ S

thenU1, U2, . . . , U

n

are constant on51S, 52S, . . . , 5

n

S respectively with the sum of
the constants equal to zero.
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A corollary of the above corollary is:

COROLLARY 3

Let S ⊂ � be full. Let{1, 2, . . . , n} = A ∪ B, A ∩ B = ∅. Let U1, U2, . . . , U

n

be a
solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ S,

subject tou
i

(x

0
i

) = 0, i ∈ A. ThenU

i

(x

i

) = 0 for all x

i

∈ 5

i

S, i ∈ A, while if c

j

=

U

j

(x

j

), x

j

∈ 5

j

S, for j ∈ B, then
∑

j∈B

c

j

= 0. More generally, if U1, U2, . . . , U

n

andV1, V2, . . . , V

n

are two solutions of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

subject tou
i

(x

0
i

) = c

i

, i ∈ A, thenU

i

(x

i

) = V

i

(x

i

) for all x

i

∈ 5

i

S, i ∈ A, whileU

j

(x

j

)

−V

j

(x

j

) is constant on5
j

S for j ∈ B, and if this constant bed
j

, then,
∑

j∈B

d

j

= 0.

If A andB are two subsets of� and if5
i

A ∩ 5

i

B 6= ∅ then we say thatA andB have
a common coordinate of theith kind.

DEFINITION

Two subsetsS1, S2 of � are said to have a common coordinate if at least one of then

intersections5
i

S1 ∩ 5

i

S2, 1 ≤ i ≤ n, is non-empty. We say thatS1, S2 havek distinct
coordinates in common ork different kinds of coordinates in common, if at leastk of the
aboven intersections are non-empty.

We now make a series of set theoretic observations on full sets:

(1) If S1 andS2 are full,S1 ∪ S2 is good, andS1 andS2 haven − 1 distinct coordinates in
common, thenS1 ∪ S2 is full.

(2) If S

α

, α ∈ I , is an indexed family of full sets such that (i)∪

α∈I

S

α

is a good set, (ii)
given S

α

, S

β

in the family, there existS1, S2, . . . , S

n

in the family such thatS1 =

S

α

, S

n

= S

β

, and for eachi, 1 ≤ i ≤ n−1,S
i

andS

i+1 haven−1 distinct coordinates
in common, then∪

α∈I

S

α

is a full set.
(3) The union of a totally ordered (under inclusion) family of full sets is a full set.
(4) If S is a good set andEx ∈ S, then the union of all full subsets ofS containingEx

is a full set. It is the largest full subset ofS containingEx. We denote it byF(Ex) or
F(x1, x2, . . . , x

n

).
(5) If Ey ∈ F(Ex) thenF(Ey) = F(Ex), for thenF(Ex) andF(Ey) haven coordinates in common

all of different kind.
(6) For Ex, Ey ∈ S, eitherF(Ex) = F(Ey) or F(Ex) ∩ F(Ey) = ∅. Further, sinceEx is always

an element ofF(Ex), we see that the collectionF(Ex), Ex ∈ S, is a partition ofS,
which we call the partition ofS into full components and callF(Ex) a full component
of S.

(7) Two distinct full components of a good setS can have at mostn − 2 different kinds of
coordinates in common.
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4. Boundary set and its existence

As a matter of convenience we will assume henceforth that the setsX

i

, 1 ≤ i ≤ n, are
pairwise disjoint.

DEFINITION

Let S ⊂ � be a good set. A subsetB ⊂ ∪

n

i=15i

S is said to be a boundary set forS if for
any complex valued functionU onB and for anyf : S → C the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

subject tou
i

|

B∩5

i

S

= U |

B∩5

i

S

, 1 ≤ i ≤ n, admits a unique solution.

Examples

(1) If S is full then any set ofn − 1 different kinds of coordinates ofS is a boundary set
of S.

(2) If no two distinct full components ofS have a common coordinate thenB = ∪

n−1
i=1 5

i

C

is a boundary set forS, whereC is any set which intersects each full component in
exactly one point.

(3) In casen = 2, the full components ofS are the same as the equivalence classes of
the relationL defined in Example 3 of §1, the so-called linked components in the
terminology of [3]. In this case two distinct linked components have disjoint canonical
projections and the boundary set is easily described as51C whereC is a cross-section
of the linked components. The difficulty for the higher dimensional case(n > 2)

results from the fact that two distinct full components can admit common coordinates
(although no more thann − 2 of distinct kind).

PROPOSITION 1

Let S ⊂ � be a good set which is not full. Assume that there exists a full setF, S ⊂ F ,
such thatF − S is full, 5

i

S = 5

i

F, 1 ≤ i ≤ n. ThenB = ∪

n

i=15i

(F − S) is a boundary
set forS.

Proof. Let U

i

, 1 ≤ i ≤ n, be any complex valued functions on5
i

(F − S), 1 ≤ i ≤ n,
respectively. Letf : S → C be arbitrary and extendf to all of F by setting

f (x1, x2, . . . , x

n

) = U1(x1) + U2(x2) + · · · + U

n

(x

n

),

(x1, x2, . . . , x

n

) ∈ F − S.

Fix (x

0
1, x

0
2, . . . , x

0
n

) ∈ F − S. SinceF is full, the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ F, (6)

subject to

u1(x
0
1) = U1(x

0
1), u2(x

0
2) = U2(x

0
2), . . . , u

n−1(x
0
n−1) = U

n−1(x
0
n−1),

(7)
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admits a unique solution, say,V1, V2, . . . , V

n

. SinceU
i

, 1 ≤ i ≤ n, is already a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ (F − S),

subject tou1(x
0
1) = U1(x

0
1), u2(x

0
2) = U2(x

0
2), . . . , u

n−1(x
0
n−1) = U

n−1(x
0
n−1), and

sinceF − S is full, this solution is unique and we see that

V

i

|

5

i

(F−S)

= U

i

, 1 ≤ i ≤ n.

We now show thatV
i

|

5

i

S

, 1 ≤ i ≤ n, is the unique solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

), (x1, x2, . . . , x

n

) ∈ S,

(8)

subject to

u

i

|

5

i

(F−S)

= U

i

, 1 ≤ i ≤ n. (9)

For, if W

i

, 1 ≤ i ≤ n, is another solution of (8) subject to (9) distinct fromV
i

, 1 ≤ i ≤ n,
thenW

i

, 1 ≤ i ≤ n, is also a solution of (6) subject to (7), which is a contradiction, since
this system has a unique solution asF is full. The theorem follows.

We see from this theorem that to prove the existence of a boundary setB for a non-full
good setS ⊂ �, it is enough to prove the existence of a full setF containingS, having
the same canonical projections asS, and such thatF − S is also full. We have:

Theorem 4. Let S ⊂ � be a good set which is not full. Then there exists a full setF

containingS such that(i) 5

i

(S) = 5

i

F, 1 ≤ i ≤ n, (ii) F − S is full.

Proof. SinceS is not full there exists aEb = (b1, b2, . . . , b

n

) /∈ S, b

i

∈ 5

i

S, 1 ≤ i ≤ n,
such thatS′

= S ∪ {

E

b} is good. Note thatS′

− S is a singleton, so a full set, and the
canonical projections ofS andS

′ on coordinate spaces agree.
Let F be the collection of good supersetsF of S such that

(i) 5

i

(F ) = 5

i

S, 1 ≤ i ≤ n,
(ii) F − S is full.

Note thatF is non-empty sinceS′ belongs to it. We partially orderF under inclusion
and observe that every chain inF admits an upper bound, namely the union of the members
of the chain. By Zorn’s lemmaF admits a maximal set. LetF be one such maximal set.
ClearlyF satisfies conclusions (i) and (ii) of the theorem sinceF is in F . What remains to
be proved is thatF is full. If F is not full, there exist a non-trivial solutionU1, U2, . . . , U

n

of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ F,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 (hence alsoU

n

(x

0
n

) = 0), where
(x

0
1, x

0
2, . . . , x

0
n

) ∈ (F −S) is fixed. LetEa = (a1, a2, . . . , a

n

) be a point inF such that for
somei, U

i

(a

i

) 6= 0. Such a point exists sinceU
i

’s form a non-trivial solution. Moreover,Ea
cannot be inF −S sinceF −S is full and there the solution is the trivial solution. Assume
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without loss of generality thatU1(a1) 6= 0. Consider the pointEb = (a1, x
0
2, . . . , x

0
n

),
which is not inF . The setH = F ∪ {

E

b} can be shown to be a good set as in Theorem 2.
Also 5

i

H = 5

i

F = 5

i

S for 1 ≤ i ≤ n. FinallyH − S is a full set for ifV1, V2, . . . , V

n

is a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = 0, (x1, x2, . . . , x

n

) ∈ H − S,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 (hence alsoU

n

(x

0
n

) = 0), then
it is also a solution onF − S, and sinceF − S is full, the V

i

’s are identically zero on
5

i

(F − S), 1 ≤ i ≤ n. Clearly, sinceV
i

(x

0
i

) = 0, for 2≤ i ≤ n, we see thatV1(a1) = 0,
so thatV

i

, 1 ≤ i ≤ n is a trivial solution onH −S as well, so thatH −S is a full set. Thus
H belongs to the familyF , and is strictly bigger than the maximalF , a contradiction. So
F is a full set. The theorem is proved.

Remarks

(1) Let B be a boundary of a good setS which is not full and assume that for eachi,
B

i

= 5

i

B∩X

i

6= ∅. Such a boundary always exists for a non-full good setS. For eachi
choose ab

i

∈ B

i

, and letR = ∪

n

i=1{b1}×{b2}×· · ·×{b

i−1}×{B

i

}×{b

i+1}×· · ·×{b

n

}.
It is easy to verify that (1)R is a full set, (2)F = S ∪ R is a full set with5

i

F =

5

i

S, 1 ≤ i ≤ n. We will denote the full setF thus obtained byF(S, B) and call
F(S, B) a full set associated toS.

(2) If B is a boundary ofS then no proper subset ofB can be a boundary ofS, hence also
no proper superset ofB can be a boundary ofS.

(3) Corollary 3 suggests an equivalence relationE

i

on5

i

S, which is related to the notion
of boundary.

WritexE

i

y if there exists a finite sequenceR1, R2, . . . , R

k

of related components such
thatx ∈ R1, y ∈ R

k

and5

i

R

j

∩5

i

R

j+1 6= ∅ for 1 ≤ j ≤ k −1. We call the equivalence
classes ofE

i

theE

i

-componentsof 5

i

S. It is clear that a boundaryB of S can intersect
anE

i

-component of5
i

S in at most one point.
We will write E for the equivalence relation on∪n

i=15i

S which, for eachi, agrees with
E

i

on 5

i

S. For any setA ⊂ 5

i

S we write s

i

(A) for the saturation ofA with respect to
the equivalence relationE

i

, the symbols(A) denotes the saturation ofA with respect to
the equivalence relationE.

In a discussion with Gowri Navada it emerged that the boundary of a good setS can be
described in terms of the equivalence relationsE

i

, i = 1, 2, . . . , n as follows:
Let S be a good set andR

α

, α ∈ I be its related components. LetJ1, J2, . . . , J

n

denote
the set of equivalence classes ofE1, E2, . . . , E

n

. Let C be a set which meets eachR
α

in exactly one point and let(xα

1 , x

α

2 , . . . , x

α

n

) denote this point inR
α

∩ C. Note that
J

i

= {s

i

(x

α

i

) : α ∈ I }.
Let U1, U2, . . . , U

n

be a solution for the zero function onS. ThenU

i

is a constant
on s

i

(x

α

i

) and if we denote this constant byaα

i

, then we can identifyaα

i

with s

i

(x

α

i

) and
think of s

i

(x

α

i

) as a variable, which satisfies the relations
∑

n

i=1 a

α

i

= 0. The set of formal
finite linear combinations (with complex coefficients) ofs

i

(x

α

i

)’s, which is the same as the
finite linear combinations ofaα

i

’s is a linear space for whichaα

i

, i = 1, 2, . . . , n, form a
generator but not a basis in view of the relations

∑

n

i=1 a

α

i

= 0. But we can choose a basis
from among the generators and ifB denotes such a basis, a selection of one point from



190 A Kłopotowski, M G Nadkarni and K P SBhaskara Rao

each element ofB forms a boundary ofS. This way of getting the boundary is more in
line with the casen = 2, sinceC plays a role here.

Let D be a set which meets each element ofB in exactly one point. We show thatD

forms a boundary forS. LetU be any function onD andU

i

the restriction ofU toD∩5

i

S.
We show that zero function onS has a unique solutionU1, U2, . . . , U

n

which agrees with
U

i

on D ∩ 5

i

S. If x

i

∈ D ∩ 5

i

S andy

i

∈ s

i

(x

i

) then defineU
i

(y

i

) = U

i

(x

i

). We may
view U as defined onB. Let z = z

j

∈ 5

j

S and supposes
j

(z

j

) =

∑

c

k

b

k

whereb

k

∈ B.
We defineU

j

(z

j

) =

∑

c

k

U

k

(b

k

). This extendsU to all of ∪5

i

S.
Now formal relation,

∑

n

i=1 s

i

(x

α

i

) = 0, implies that when we replaces
i

(x

α

i

) by a finite
linear combination ofb

j

’s, that sum of the coefficients vanishes, this in turn implies that
∑

U

i

(x

α

i

) = 0, and this solution of the zero function is unique subject to the prescribed
boundary values.

5. Relation, paths and geodesics

DEFINITION

Two pointsEx, Ey in a good setS are said to berelated if there exists a finite subset ofS
which is full and contains bothEx andEy. If Ex andEy are related then we writeExREy.

The relationR is obviously symmetric and reflexive. It is transitive in view of observation
1 about full sets, so thatR is an equivalence relation, whose equivalence classes we call
theR-components ofS. Note thatR-components ofS are full subsets ofS. However we
do not know ifR-components are the same as full components. Gowri Navada [15] has
shown that ifS has finitely many related components then these components are also the
full components.

DEFINITION

Let Ex, Ey be two related points of a good setS. Any finite full setF ⊂ S containing bothEx
andEy is called a path joiningEx andEy. Any path joiningEx andEy of the smallest cardinality
is called a geodesic. Cardinality of a path joiningEx andEy is called the length of the path.

Lemma.A, B, A ∪ B are full sets andA ∩ B 6= ∅, thenA ∩ B is full.

Proof. If A ∩ B = A or A ∩ B = B then there is nothing to prove sinceA andB are
full. Assume therefore thatA − B 6= ∅ andB − A 6= ∅. Let Ex

0
= (x

0
1, x

0
2, . . . , x

0
n

) be an
element ofA ∩ B. Let f be a complex valued function onA ∩ B. Let U1, U2, . . . , U

n

be
a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

), Ex ∈ A ∩ B, (10)

subject to

u1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0. (11)

We show that this solution is unique. Recall that the uniqueness (to be proved) of
U

i

, 1 ≤ i ≤ n, is only with regard to its values on the sets5

i

(A ∩ B), 1 ≤ i ≤ n. Define

g(x1, x2, . . . , x

n

) = U1(x1) + U2(x2) + · · · + U

n

(x

n

),

(x1, x2, . . . , x

n

) ∈ B.
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Defineh(Ex) = f (Ex), Ex ∈ A ∩ B, h(Ex) = 0, Ex ∈ A − A ∩ B. Note thath depends only on
f and not on theU

i

’s. Note thatg andh agree onA ∩ B, so we can define a functionφ on
A ∪ B which equalsh onA and equalsg onB. Let W1, W2, . . . , W

n

be a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = φ(x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ A ∪ B,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0.

This solution is unique sinceA∪B is full. The functionsW
i

, 1 ≤ i ≤ n, when restricted
to 5

i

B, 1 ≤ i ≤ n, form a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = g(x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ B,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0.

SinceB is full, this solution is unique, and so if agrees with the already known solution,
namelyU

i

on5

i

B, 1 ≤ i ≤ n.
Now W

i

, 1 ≤ i ≤ n, when restricted to5
i

A, 1 ≤ i ≤ n, is the solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = h(x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ A, (12)

subject to

u1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0, (13)

and this solution is unique sinceA is full. Moreover, sinceh depends only onf and
not onU

i

’s, we see thatW
i

|

5

i

A

, 1 ≤ i ≤ n, remain the same no matter what solution
U1, U2, . . . , U

n

of (10) subject to (11) is chosen. LetW

i

|

5

i

(A)

= V

i

, 1 ≤ i ≤ n. We have
for anyx

i

∈ 5

i

(A ∩ B)

U

i

(x

i

) = W

i

(x

i

) = V

i

(x

i

), 1 ≤ i ≤ n.

We see therefore that for eachi, the original functionU
i

defined on5
i

(A ∩ B), 1 ≤

i ≤ n, is unique being the restriction of the unique solutionV

i

, 1 ≤ i ≤ n, of (12) subject
to (13). This proves the lemma.

Note that we have proved that, under the hypothesis of the lemma,∪

n

i=15i

(A ∩ B) is a
boundary ofA − (A ∩ B), B − (A ∩ B), and also of(A − A ∩ B) ∪ (B − A ∩ B).

Theorem 5. If two pointsEx andEy in a good set are related, then there is only one geodesic
joining them.

Proof. Let k be the minimum of the cardinalities of the paths joiningEx to Ey, and letA and
B be two paths of cardinalityk joining Ex to Ey. By the lemma above we see thatA ∩ B is a
full set containingEx andEy, hence a path joiningEx andEy. If A 6= B, thenA ∩ B will be a
path of smaller cardinality thank, a contradiction. This proves the theorem.

Remark.It is interesting to note that the full set{(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0)} has
the property that any two distinct points are at a geodesic distance four from each other, a
situation which does not arise whenn = 2.



192 A Kłopotowski, M G Nadkarni and K P SBhaskara Rao

6. Procedure for solution

We now discuss a procedure for obtaining a solutionU

i

, 1 ≤ i ≤ n, of the equation

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

for a given functionf on a good setS.

Case1. Assume that any two points inS are related so thatS is itself theR-component of
S. Letf : S → C be given. FixEx0

= (x

0
1, x

0
2, . . . , x

0
n

) ∈ S. Let Ey = (y1, y2, . . . , y

n

) ∈ S.
SetU1(x

0
1) = 0, U2(x

0
2) = 0, . . . , U

n−1(x
0
n−1) = 0. We would like to obtain,U1(y1),

U2(y2), . . . , U

n

(y

n

), so that

U1(y1) + U2(y2) + · · · + U

n

(y

n

) = f (y1, y2, . . . , y

n

).

To this end let

G = {Ex

1
, Ex

2
, . . . , Ex

k

}, Ex

0
= Ex

1
, Ey = Ex

k

,

be a geodesic joiningEx0 to Ey. Let(xj

1, x

j

2, . . . , x

j

n

)denote the coordinates ofEx

j

, 1 ≤ j ≤ k.
Let

A

i

= 5

i

G, 1 ≤ i ≤ n, C = (∪

n

i=1Ai

) − {x

0
1, x

0
2, . . . , x

0
n−1}.

A function defined onG × C will be calledG × C matrix. Consider theG × C matrixM

defined by

M(Ex

i

, c) = 1 if c ∈ {x

i

1, x
i

2, . . . , x

i

n

} ∩ C, M(Ex

i

, c) = 0 otherwise.

To solve

u1(x
j

1) + u2(x
j

2) + · · · + u

n

(x

j

n

) = f (x

j

1, x

j

2, . . . , x

j

n

), 1 ≤ j ≤ n,

subject tou1(x
1
1) = 0, u2(x

1
2) = 0, . . . , u

n−1(x
1
n−1) = 0, means to solve for a functiong

onC which satisfies
∑

c∈C

M(Ex

j

, c)g(c) = f (Ex

j

).
Since the solution is known to exist and is unique (sinceG is a full set), we see thatC

has the same number of points asG, namelyk, and thek × k matrixM is invertible (since
the solution exists for allf on G). Finally U

i

(y

i

) = g(y

i

) = g(x

k

i

), 1 ≤ i ≤ n. If we
write M for the system ofG × C matrices whereG runs over the geodesics beginning at
Ex

0, andC the associated set as above, then we may write the solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

subject tou1(x
0
1) = 0, . . . , u

n−1(x
0
n−1) = 0, formally asM−1

f .

Case2. If no two distinct related components ofS admit a common coordinate, then we
could repeat the above procedure in each related component and get a solution.
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Case3. If there is a pair of related components ofS with a common coordinate then the
solution as in Case 2 will yield solutions only on related components, but solutions on
different related components may not match on a common coordinate. We therefore make
use of the boundary and the full set associated toS (see Remark 1, §4).

Let S be a good set and letB be the boundary ofS, andF = F(S, B) the full set
associated toS. If f is a complex valued function onS, we extend it toF by setting it
equal to zero onR = F − S. If F , which is a full set, is also its own related component
then we can solve for

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ F,

subject tou1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0 with (x

0
1, x

0
2, . . . , x

0
n

) ∈ F , and
restrict the solution toS.

7. Remarks on convergence

Let S be a good set in which any two points are related. Iff

k

, k = 1, 2, . . . is a sequence
of functions onS converging pointwise to a functionf and if, for eachk, U

k,i

, 1 ≤ i ≤ n,
is a solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f

k

(x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S,

then, in general the functionsU
k,i

, k = 1, 2, . . . need not converge ask → ∞. However, it
is clear from the above discussion that if the solutions are required to satisfy the boundary
conditionU

k,i

(x

0
i

) = 0, 1 ≤ i ≤ n − 1, 1 ≤ k < ∞, then for eachi, the sequence
U

k,i

, k = 1, 2, . . . converges pointwise on the set5

i

S to a functionU
i

and theseU
i

, 1 ≤

i ≤ n give the unique solution of

u1(x1) + u2(x2) + · · · + u

n

(x

n

) = f (x1, x2, . . . , x

n

),

(x1, x2, . . . , x

n

) ∈ S, (14)

subject to

u1(x
0
1) = 0, u2(x

0
2) = 0, . . . , u

n−1(x
0
n−1) = 0. (15)

If f

k

, k = 1, 2, . . . converge uniformly tof and if there is a uniform bound, sayl, for the
lengths of geodesics inS, then, for eachi, the convergence ofU

k,i

, k = 1, 2, . . . is also
uniform assuming of course that the solutionsU

k,i

, 1 ≤ i ≤ n, satisfy for eachi andk,
U

k,i

(x

0
i

) = 0. (Note that for a fixedl there are only finitely manyl × l zero-one invertible
matrices, so their norms are bounded away from zero.)

Thus, if S is its own related component and geodesics are of bounded length then for
boundedf the solution of (14) subject to (15) consists of boundedu

i

, 1 ≤ i ≤ n. If S is not
a related component but the setF associated toS is a related component whose geodesics
are of bounded length, then also (14) admits bounded solution wheneverf is bounded.
This sufficient condition for bounded solution is more in line with the condition for two-
dimensional case, than the necessary and sufficient condition of uniform separability due
to Sternfeld [18] or conditions discussed by Sproston and Strauss [16].
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8. Descriptive set theoretic considerations

Now letX1, X2, . . . , X

n

be Polish spaces equipped with their respective Borelσ -algebras.
Let � = X1 × X2 × · · · × X

n

be equipped with the product Borel structure. LetS ⊂ �

be a good Borel set. We will show that the equivalence relationR is a Borel equivalence
relation. To this end letSk

= S

{1,2,... ,k} be thek-fold Cartesian product ofS with itself.
Let (Ex1

, Ex

2
, . . . , Ex

k

) ∈ S

k, Ex

i

= (x

i

1, x
i

2, . . . , x

i

n

), 1 ≤ i ≤ n,

G = {Ex

1
, Ex

2
, . . . , Ex

k

}, C = ∪

n−1
i=1 (5

i

G − {x

1
i

}) ∪ 5

n

G.

Let M(Ex

1
, Ex

2
, . . . , Ex

k

) denote theG × C matrix (see §6)

M(Ex

i

, c) = 1 if c ∈ {x

i

1, x
i

2, . . . , x

i

n

} ∩ C, M(Ex

i

, c) = 0 otherwise.

The mapping

K: (Ex

1
, Ex

2
, . . . , Ex

k

) → M((Ex

1
, Ex

2
, . . . , Ex

k

))

is a Borel map fromSk into the space of finite matrices. An element(Ex

1
, Ex

2
, . . . , Ex

k

) ∈ S

k

is called an ordered geodesic of lengthk betweenEx1 andEx

k if {Ex

1
, Ex

2
, . . . , Ex

k

} is a geodesic
betweenEx1 andEx

k.
For a proper subsetJ of {1, 2, . . . , k}, 5

J

will denote the canonical projection ofS

k

onto S

J . In the definition ofM
k

below,J runs over all proper subsets of{1, 2, . . . , k}

which contain 1 andk.

M

k

= {(Ex

1
, Ex

2
, . . . Ex

k

) ∈ S

k : ∀J, M(5

J

(Ex

1
, Ex

2
, . . . , Ex

k

)) is not invertible},

L

k

= {(Ex

1
, Ex

2
, · · · Ex

k

) ∈ S

k : M(Ex

1
, Ex

2
, · · · Ex

k

) is invertible},

G

k

= L

k

∩ M

k

.

We note thatG
k

is the set of vectors inSk which are ordered geodesics of lengthk between
its first and the last coordinates. It is a Borel set sinceM

k

andL

k

are Borel sets. Since
there are(k−2)! ordered geodesics between two points when the geodesic length between
them isk, the maps defined by (fork = 1, 2, . . . )

φ

k

(Ex

1
, Ex

2
, . . . , Ex

k

) = (Ex

1
, Ex

k

), k ≥ 2, φ1(Ex
1
) = (Ex

1
, Ex

1
)

from G

k

to S × S are finite to 1 Borel maps, so that for eachk, φ

k

(G

k

) is a Borel set. The
equivalence relationR = ∪

∞

k=1φk

(G

k

) is thus a Borel equivalence relation.
We mention here some observations due to S M Srivastava and H Sarbadhikari on the

nature of the relationsR andE

i

.
Let S be compact, second countable and good. Then

(1) The decompositionR of S into related components as well as the equivalence relations
E

i

defined in terms of related components areσ -compact.
(2) If for each related componentL there is a positive integerN

L

such that every geodesic
in L is of length at mostN

L

, thenL is compact. Hence, in this case, there is aG

δ

cross-section for equivalence classes ofR.

Assume, moreover, thatN

L

is independent ofL. ThenR is compact. Further, letC be an
E

i

equivalence class that is of bounded type, in the sense that there is a positive integerM

C
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such that for everyx, y ∈ C, one needs at mostM

C

many related components to witness
thatxE

i

y. ThenC is compact. Hence, if eachC is of bounded type, thenE
i

equivalence
classes admit aG

δ

cross-section. Further, ifM
C

is independent ofC, thenE

i

equivalence
classes itself is compact.

It is not clear how to combine these facts with the second description of the boundary
given at the end of §4 to give a good sufficient condition for the existence of a Borel
measurable boundary, a hypothesis needed in the discussion that follows. Of course if there
are only countably manyR equivalence classes then the boundary is countable too, hence
Borel measurable.

If S is a good Borel set and iff a complex valued Borel function onS, the question
whether one can choose the functionsU

i

, 1 ≤ i ≤ n, in (14) in a Borel fashion has, in
general, a negative answer [6]. We discuss conditions under which an affirmative answer
is possible.

Assume now that the related components ofS admit a Borel cross-section0. The set
R

k

of ordered geodesics of lengthk beginning at a point in0 is a Borel set since

R

k

= {(Ex

1
, Ex

2
, . . . , Ex

k

) ∈ G

k

: Ex

1
∈ 0} = (5

−1
1 0) ∩ G

k

.

The setC
k

= 5

k

R

k

is the Borel set of points inS which are joined to some point in0
by a geodesic of lengthk. ClearlyS = ∪

∞

k=1Ck

, the union being pairwise disjoint, where
C1 = 0.

It is clear from the procedure given for the solution of (14) that

(1) if f is a Borel function andS has only one related component, then the solution is
made of Borel functions,

(2) if S admits a Borel measurable boundary and the full setF associated toS is its own
related component, then the solution of (14) is made of Borel functions wheneverf

is Borel,
(3) if no two related components ofS admit a common coordinate and the related com-

ponents ofS admit a Borel cross-section then the solution is made of Borel functions
wheneverf is Borel.

9. Simplicial measures and sums of algebras

Let X1, X2, . . . , X

n

be Polish spaces, and� their Cartesian product equipped with the
product Borel structure. A probability measureµ on� is called simplicial if it is an extreme
point of the convex set of all probability measures on� whose one-dimensional marginals
are the same as those ofµ. Let µ

i

denote the marginal ofµ on X

i

, 1 ≤ i ≤ n. A basic
theorem of Lindenstrauss [9] and Douglas [4] states that a probability measure on� is
simplicial if and only if the collection of functions of the form

u1(x1) + u2(x2) + · · · + u

n

(x

n

), u

i

∈ L1(Xi

, µ

i

), 1 ≤ i ≤ n,

is dense inL1(�, µ).
A Borel setE ⊂ � is called a set of marginal uniqueness (briefly an MU-set) if every

probability measureµsupported onE is an extreme point of the convex set of all probability
measures on� with one-dimensional marginals same as those ofµ. Clearly any Borel
subset of an MU-set is an MU-set and since a loop is not an MU-set, anMU -set cannot
contain a loop, whence an MU-set is a good set.
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If S is a good Borel set in which any two points are related and there is a uniform
upper bound for the lengths of geodesics, then every bounded Borel function onS is a
sum of bounded Borel functions onX1, X2, . . . , X

n

respectively and since bounded Borel
functions are dense inL1, we see thatS is a set of marginal uniqueness.

More generally it can be shown, as in the casen = 2 (see [5,6]), that ifS is a good
Borel set in which any two points are related and there is a uniform upper bound for
U1, U2, . . . , U

n

which form the solution of (14) subject to (15) forf which are indicator
functions of singletons, thenS is an MU-set. Of course one can replace the hypothesis on
S by a similar hypothesis onF(S, B) and claim thatS is an MU-set.

Assume now thatX1, X2, . . . , X

n

are compact metric spaces. LetS ⊂ � be a compact
set with5

i

S = X

i

, for i = 1, 2, . . . , n. It is easy to see, by considering annihilators,
thatC(X1) + C(X2) + · · · + C(X

n

) is dense inC(S) if and only if S is a set of marginal
uniqueness. We see therefore that if any two points of the setF = F(S, B) are related,S
has a Borel measurable boundary and if geodesics lengths inF are bounded above then
C(X1) + C(X2) + · · · + C(X

n

) is dense inC(S). In fact we also have

C(X1) + C(X2) + · · · + C(X

n

) = C(S).

We see this as follows: Letf ∈ C(S), and letU1,k

, U2,k

, . . . , U

n,k

, k = 1, 2, . . . be a
sequence of continuous functions onX1, X2, . . . , X

n

respectively, such thatU1,k

+U2,k

+

· · · + U

n,k

converges tof uniformly. Fix Ex

0
= (x

0
1, x

0
2, . . . , x

0
n

) ∈ S. Let

V

i,k

= U

i,k

− U

i,k

(x

0
i

), 1 ≤ i ≤ n − 1, V

n,k

= U

n,k

+

n−1
∑

j=1

U

j,k

(x

0
j

).

ThenV

i,k

, 1 ≤ i ≤ n, are continuous and their sum converges tof uniformly. But since
V

i,k

(x

0
i

) = 0, 1 ≤ i ≤ n− 1, we see from our remarks on convergence that each sequence
V

i,k

, k = 1, 2, . . . of continuous functions converges uniformly to a continuous function
V

i

onX

i

and thatf is the sum of these functions.
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