39,659 research outputs found
Robust filtering for stochastic genetic regulatory networks with time-varying delay
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the true concentrations of mRNA and protein by designing a linear filter such that, for all admissible time delays, stochastic disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. under Grants BB/C506264/1 and 100/EGM17735, an International Joint Project sponsored by the Royal Society of the U.K., the Research Grants Council of Hong Kong under Grant HKU 7031/06P, the National Natural Science Foundation of China under Grant 60804028, and the Alexander von Humboldt Foundation of Germany
Effect of inter-edge Coulomb interactions on transport through a point contact in a \nu = 5/2 quantum Hall state
We study transport across a point contact separating two line junctions in a
\nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb
interactions between the chiral bosonic edge modes of the half-filled Landau
level (assuming a Pfaffian wave function for the half-filled state) and of the
two fully filled Landau levels. In the presence of inter-edge Coulomb
interactions between all the six edges participating in the line junction, the
stable fixed point corresponds to a point contact which is neither fully opaque
nor fully transparent. Remarkably, this fixed point represents a situation
where the half-filled level is fully transmitting, while the two filled levels
are completely backscattered; hence the fixed point Hall conductance is given
by G_H = {1/2} e^2/h. We predict the non-universal temperature power laws by
which the system approaches the stable fixed point from the two unstable fixed
points corresponding to the fully connected case (G_H = {5/2} e^2/h) and the
fully disconnected case (G_H = 0).Comment: 6 pages, 3 figures; made several changes -- this is the published
versio
An Adaptive Algorithm to Optimize the Dynamics of IEEE 802.15.4 Networks
Presentado en ICST 2013IEEE 802.15.4 standard is becoming one of the most popular technologies for the deployment of low rate Wireless Personal Area Networks with strong power constraints. In order to reduce the energy consumption, beacon-enabled networks with long network inactive periods can be employed. However, the duration of these inactivity periods, as some other configuration parameters, are conventionally set to default values and remain fixed during the whole network operation. This implies that if they are misconfigured the network will not adapt to changes in the conditions of the environment, particularly to the most determining one, i.e. the traffic load. This paper proposes a simple procedure for the dynamic adaptation of several key parameters of IEEE 802.15.4 networks. Under this procedure, the 802.15.4 parameters are modified as a function of the existing traffic conditions.Spanish National Project No.TEC2009-13763-C02-01
Vibrational branching ratios in photoionization of CO and N2
We report results of experimental and theoretical studies of the vibrational branching ratios for CO 4sigma(-1) photoionization from 20 to 185 eV. Comparison with results for the 2sigma(u)(-1) channel of the isoelectronic N-2 molecule shows the branching ratios for these two systems to be qualitatively different due to the underlying scattering dynamics: CO has a shape resonance at low energy but lacks a Cooper minimum at higher energies whereas the situation is reversed for N-2
Local modularity measure for network clusterizations
Many complex networks have an underlying modular structure, i.e., structural
subunits (communities or clusters) characterized by highly interconnected
nodes. The modularity has been introduced as a measure to assess the
quality of clusterizations. has a global view, while in many real-world
networks clusters are linked mainly \emph{locally} among each other
(\emph{local cluster-connectivity}). Here, we introduce a new measure,
localized modularity , which reflects local cluster structure. Optimization
of and on the clusterization of two biological networks shows that the
localized modularity identifies more cohesive clusters, yielding a
complementary view of higher granularity.Comment: 5 pages, 4 figures, RevTex4; Changed conten
Connection between accretion disk and superluminal radio jets and the role of radio plateau state in GRS 1915+105
We investigate the association between the accretion disk during radio
plateau state and the following superluminal relativistic radio jets with peak
intensity varies from 200 mJy to 1000 mJy observed over a period of five years
and present the evidences of direct accretion disc-jet connection in
microquasar GRS 1915+105. We have analysed RXTE PCA/HEXTE X-ray data and have
found that the accretion rate, , as inferred from the X-ray
flux, is very high during the radio plateaux. We suggest that the accretion
disk during the radio plateaux always associated with radiation-driven wind
which is manifested in the form of enhanced absorption column density for X-ray
and the depleted IR emission. We find that the wind density increases with the
accretion disk luminosity during the radio plateaux. The wind density is
similar to the density of the warm absorber proposed in extragalactic AGNs and
Quasars. We suggest a simple model for the origin of superluminal relativistic
jets. Finally, We discuss the implications of this work for galactic
microquasars and the extragalactic AGNs and Quasars.Comment: 9 pages, 6 Figures, Accepted for publication in Ap
- …