36,149 research outputs found
Size scale effect in cavitation erosion
An overview and data analyses pertaining to cavitation erosion size scale effects are presented. The exponents n in the power law relationship are found to vary from 1.7 to 4.9 for venturi and rotating disk devices supporting the values reported in the literature. Suggestions for future studies were made to arrive at further true scale effects
The mechanism of erosion of metallic materials under cavitation attack
The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5Al-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation
Characterization of erosion of metallic materials under cavitation attack in a mineral oil
Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period
Characterization of erosion of metallic materials under cavitation attack in a mineral oil
Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period
Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil
The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass
Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water
Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1
Towards Communication-Efficient Quantum Oblivious Key Distribution
Oblivious Transfer, a fundamental problem in the field of secure multi-party
computation is defined as follows: A database DB of N bits held by Bob is
queried by a user Alice who is interested in the bit DB_b in such a way that
(1) Alice learns DB_b and only DB_b and (2) Bob does not learn anything about
Alice's choice b. While solutions to this problem in the classical domain rely
largely on unproven computational complexity theoretic assumptions, it is also
known that perfect solutions that guarantee both database and user privacy are
impossible in the quantum domain. Jakobi et al. [Phys. Rev. A, 83(2), 022301,
Feb 2011] proposed a protocol for Oblivious Transfer using well known QKD
techniques to establish an Oblivious Key to solve this problem. Their solution
provided a good degree of database and user privacy (using physical principles
like impossibility of perfectly distinguishing non-orthogonal quantum states
and the impossibility of superluminal communication) while being loss-resistant
and implementable with commercial QKD devices (due to the use of SARG04).
However, their Quantum Oblivious Key Distribution (QOKD) protocol requires a
communication complexity of O(N log N). Since modern databases can be extremely
large, it is important to reduce this communication as much as possible. In
this paper, we first suggest a modification of their protocol wherein the
number of qubits that need to be exchanged is reduced to O(N). A subsequent
generalization reduces the quantum communication complexity even further in
such a way that only a few hundred qubits are needed to be transferred even for
very large databases.Comment: 7 page
Local electronic structure of Fe impurities in MgO thin films: Temperature-dependent soft x-ray absorption spectroscopy study
We report on the local electronic structure of Fe impurities in MgO thin
films. Using soft x-ray absorption spectroscopy (XAS) we verified that the Fe
impurities are all in the 2+ valence state. The fine details in the line shape
of the Fe edges provide direct evidence for the presence of a
dynamical Jahn-Teller distortion. We are able to determine the magnitude of the
effective crystal field energies. We also observed a strong
temperature dependence in the spectra which we can attribute to the thermal
population of low-lying excited states that are present due to the spin-orbit
coupling in the Fe 3d. Using this Fe impurity system as an example, we
show that an accurate measurement of the orbital moment in FeO will
provide a direct estimate for the effective local low-symmetry crystal fields
on the Fe sites, important for the theoretical modeling of the formation
of orbital ordering
- …