112 research outputs found

    Processes for Nanomachining Using Carbon Nanotubes

    Get PDF
    Novel methods and devices for nanomachining a desired pattern on a surface of a conductive workpiece are disclosed. In one aspect, the method comprises using an electron beam emitted from one or more nanotubes to evaporate nanoscale quantities of material from the workpiece surface. The surface of the workpiece to be machined may be excited to a threshold energy to reduce the amount of power required to be emitted by the nanotube. In another aspect, a device is described for nanomachining a desired pattern on a surface of a conductive workpiece, comprising a vessel capable of sustaining a vacuum, a leveling support, a nanopositioning stage, and a laser for heating the workpiece. A nanotool is provided comprising at least one nanotube supported on an electrically conductive base, adapted to emit an electron beam for evaporating material from an electrically conductive workpiece

    Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes

    Get PDF
    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented on nitrogen-doped multiwalled nanotubes with [approximate]5 at. % nitrogen prepared by the thermal chemical vapor deposition process

    Surface plasmon induction in multiwalled carbon nanotube arrays

    Get PDF
    Disclosed are optical devices including one or more carbon nanotubes that can function as plasmon waveguides. The presently disclosed devices advantageously utilize the existence of surface plasmons on carbon nanotubes through the generation and transport of surface plasmon polaritons across the nanotubes. Also disclosed are methods for tuning the devices through particular formation parameters for the nanotubes and/or selection of particular substrate materials. Systems of the present invention can provide optical data concerning a sample, for instance via construction of an NSOM image, as well as topological date concerning a sample via construction of an AFM image. In one embodiment, the disclosed systems can provide simultaneous acquisition of optical images and topological images

    Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth

    Get PDF
    A cell and substrate system and nerve regeneration implant are disclosed including a carbon nanotube and a neuron growing on the carbon nanotube. Both unfunctionalized carbon nanotubes and carbon nanotubes functionalized with a neuronal growth promoting agent may be utilized in the invention. A method is also disclosed for promoting neuronal growth

    Synthesis of branched carbon nanotubes

    Get PDF
    The present invention discloses a relatively simple CVD method for forming branched carbon nanotubes. In general, the method includes adding a dopant to the precursor materials. The dopant can be a material that has a thermodynamically more favorable carbide-forming reaction at the reactor conditions than does the catalyst that is provided to the reactor by a second precursor material. The doped nanoparticles formed in the reactor can adhere to the walls of the developing nanotubes and provide a nucleation site for the development of one or more branches on the nanotube. The nanotubes formed according to the invention can be recognized as such due to the presence of the doped nanoparticles adhered along the walls of the branched nanotubes

    Warming and elevated CO\u3csub\u3e2\u3c/sub\u3e alter the suberin chemistry in roots of photosynthetically divergent grass species

    Get PDF
    A majority of soil carbon (C) is either directly or indirectly derived from fine roots, yet roots remain the least understood component of the terrestrial carbon cycle. The decomposability of fine roots and their potential to contribute to soil C is partly regulated by their tissue chemical composition. Roots rely heavily on heteropolymers such as suberins, lignins and tannins to adapt to various environmental pressures and to maximize their resource uptake functions. Since the chemical construction of roots is partly shaped by their immediate biotic/abiotic soil environments, global changes that perturb soil resource availability and plant growth could potentially alter root chemistry, and hence the decomposability of roots. However, the effect of global change on the quantity and composition of root heteropolymers are seldom investigated. We examined the effects of elevated CO2 and warming on the quantity and composition of suberin in roots of Bouteloua gracilis (C4) and Hesperostipa comata (C3) grass species at the Prairie Heating and CO2 Enrichment (PHACE) experiment at Wyoming, USA. Roots of B. gracilis exposed to elevated CO2 and warming had higher abundances of suberin and lignin than those exposed to ambient climate treatments. In addition to changes in their abundance, roots exposed to warming and elevated CO2 had higher ω-hydroxy acids compared to plants grown under ambient conditions. The suberin content and composition in roots of H. comata was less responsive to climate treatments. In H. comata, α,ω-dioic acids increased with the main effect of elevated CO2, whereas the total quantity of suberin exhibited an increasing trend with the main effect of warming and elevated CO2. The increase in suberin content and altered composition could lower root decomposition rates with implications for root-derived soil carbon under global change. Our study also suggests that the climate change induced alterations in species composition will further mediate potential suberin contributions to soil carbon pools
    corecore