447 research outputs found
Melting dynamics of large ice balls in a turbulent swirling flow
We study the melting dynamics of large ice balls in a turbulent von Karman
flow at very high Reynolds number. Using an optical shadowgraphy setup, we
record the time evolution of particle sizes. We study the heat transfer as a
function of the particle scale Reynolds number for three cases: fixed ice balls
melting in a region of strong turbulence with zero mean flow, fixed ice balls
melting under the action of a strong mean flow with lower fluctuations, and ice
balls freely advected in the whole flow. For the fixed particles cases, heat
transfer is observed to be much stronger than in laminar flows, the Nusselt
number behaving as a power law of the Reynolds number of exponent 0.8. For
freely advected ice balls, the turbulent transfer is further enhanced and the
Nusselt number is proportional to the Reynolds number. The surface heat flux is
then independent of the particles size, leading to an ultimate regime of heat
transfer reached when the thermal boundary layer is fully turbulent
Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process
This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the
high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension
droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of
injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the
evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying
a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the
middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration
of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a
higher concentration of nanoparticles, smaller droplet sizes are preferred
Fundamental investigation of the drying of solid suspensions
In this work, a comprehensive series of experiments is conducted to investigate the drying behaviour of micro- and nano-sized particle dispersions. To this end, an acoustic levitator was used to study the drying kinetics of single droplets. The temporal evolution of the actual droplets was recorded using a CMOS camera and the solid grains produced at the end of drying were investigated by SEM imaging. At the end of drying, the grains show different morphologies as a function of the particle size, concentration and initial droplet volume. We combine these experimental data to show the drying behaviour is dependent on all the parameters and that the data all collapses when plotted against Péclet number. This resulted in a novel characteristic diagram which allows one to predict the shape of the dried colloidal droplet based on Pé. Our results extend the fundamental understanding of the mechanisms controlling drying of droplet suspensions
Principles of genome evolution in the Drosophila melanogaster species group.
That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance
Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques
Peer reviewedPublisher PD
Collection efficiency and design of microbial air samplers
The variables affecting the physical collection efficiency of air samplers of the type that impact microbe-carrying particles onto agar were investigated using a simplified analytical method and computational fluid dynamics. The results from these two techniques were compared, as were the effect of jet velocity, nozzle size, and nozzle distance from the agar surface; also considered was the optimisation of these variables to obtain an efficient design of sampler. A technique is described that calculates the proportion of microbe-carrying particles that a sampler will collect from a typical size distribution of microbe-carrying particles found in an occupied room; the three air samplers studied were found to collect from about 22% to over 99% of the micro-organisms in the room air
Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking
For estimating the infection risk from virus-containing airborne droplets, it is crucial to consider the interplay of all relevant physical-chemical effects that affect droplet evaporation and sedimentation times. For droplet radii in the range 70 nm < R < 60 μm, evaporation can be described in the stagnant-flow approximation and is diffusion-limited. Analytical equations are presented for the droplet evaporation rate, the time-dependent droplet size, and the sedimentation time, including evaporation cooling and solute osmotic-pressure effects. Evaporation makes the time for initially large droplets to sediment much longer and thus significantly increases the viral air load. Using recent estimates for SARS-CoV-2 concentrations in sputum and droplet production rates while speaking, a single infected person that constantly speaks without a mouth cover produces a total steady-state air load of more than 104 virions at a given time. In a midsize closed room, this leads to a viral inhalation frequency of at least 2.5 per minute. Low relative humidity, as encountered in airliners and inside buildings in the winter, accelerates evaporation and thus keeps initially larger droplets suspended in air. Typical air-exchange rates decrease the viral air load from droplets with an initial radius larger than 20 μm only moderately
Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans
The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes
Understanding the early evolutionary stages of a tandem drosophila melanogaster-specific gene family: A structural and functional population study
Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 30 ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increasedmale expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandemmultigene families can follow toward long-term consolidation in eukaryotic genomes
- …