12 research outputs found

    Mergers of Black Hole -- Neutron Star binaries. I. Methods and First Results

    Get PDF
    We use a 3-D relativistic SPH (Smoothed Particle Hydrodynamics) code to study mergers of black hole -- neutron star (BH--NS) binary systems with low mass ratios, adopting MNS/MBH≃0.1M_{NS}/M_{BH} \simeq 0.1 as a representative case. The outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter aa and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ∼60o\sim60^o lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger.Comment: to appear in ApJ, 54 pages, 19 figure

    Induced Rotation in 3D Simulations of Core Collapse Supernovae: Implications for Pulsar Spins

    Full text link
    It has been suggested that the observed rotation periods of radio pulsars might be induced by a non-axisymmetric spiral-mode instability in the turbulent region behind the stalled supernova bounce shock, even if the progenitor core was not initially rotating. In this paper, using the three-dimensional AMR code CASTRO with a realistic progenitor and equation of state and a simple neutrino heating and cooling scheme, we present a numerical study of the evolution in 3D of the rotational profile of a supernova core from collapse, through bounce and shock stagnation, to delayed explosion. By the end of our simulation (∼\sim420 ms after core bounce), we do not witness significant spin up of the proto-neutron star core left behind. However, we do see the development before explosion of strong differential rotation in the turbulent gain region between the core and stalled shock. Shells in this region acquire high spin rates that reach ∼\sim150 150\, Hz, but this region contains too little mass and angular momentum to translate, even if left behind, into rapid rotation for the full neutron star. We find also that much of the induced angular momentum is likely to be ejected in the explosion, and moreover that even if the optimal amount of induced angular momentum is retained in the core, the resulting spin period is likely to be quite modest. Nevertheless, induced periods of seconds are possible.Comment: Accepted to the Astrophysical Journa

    Black Hole Spin Evolution: Implications for Short-hard Gamma Ray Bursts and Gravitational Wave Detection

    Get PDF
    The evolution of the spin and tilt of black holes in compact black hole - neutron star and black hole - black hole binary systems is investigated within the framework of the coalescing compact star binary model for short gamma ray bursts via the population synthesis method. Based on recent results on accretion at super critical rates in slim disk models, estimates of natal kicks, and the results regarding fallback in supernova models, we obtain the black hole spin and misalignment. It is found that the spin parameter, a_spin}, is less than 0.5 for initially non rotating black holes and the tilt angle, i_tilt, is less than 45 deg for 50% of the systems in black hole - neutron star binaries. Upon comparison with the results of black hole - neutron star merger calculations we estimate that only a small fraction (~ 0.01) of these systems can lead to the formation of a torus surrounding the coalesced binary potentially producing a short-hard gamma ray burst. On the other hand, for high initial black hole spin parameters (a_spin>0.6) this fraction can be significant (~ 0.4). It is found that the predicted gravitational radiation signal for our simulated population does not significantly differ from that for non rotating black holes. Due to the (i) insensitivity of signal detection techniques to the black hole spin and the (ii) predicted overall low contribution of black hole binaries to the signal we find that the detection of gravitational waves are not greatly inhibited by current searches with non spinning templates. It is pointed out that the detection of a black hole - black hole binary inspiral system with LIGO or VIRGO may provide a direct measurement of the initial spin of a black hole.Comment: ApJ accepted: major revision

    Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    Full text link
    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument performance whilst at the same time delivering significant cost savings. A systematic holistic approach is suggested in this contribution to increase the effectiveness of this. Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International Collaboration on Advanced Neutron Sources), Mito, Japan. 201

    Preprint typeset using L ATEX style emulateapj BLACK HOLE SPIN EVOLUTION: IMPLICATIONS FOR SHORT-HARD GAMMA RAY BURSTS AND GRAVITATIONAL WAVE DETECTION

    No full text
    The evolution of the spin and tilt of black holes in compact black hole- neutron star and black hole-black hole binary systems is investigated via the population synthesis method. Based on recent results on accretion at super Eddington rates in slim disk models, estimates of natal kicks, and the results regarding fallback in supernova models, we obtain the black hole spin and misalignment. It is found that the spin parameter, aspin, is less than 0.5 for initially non rotating black holes and the tilt, itilt, is less than 40 ◦ for 50 % of the systems in black hole- neutron star binaries. Upon comparison with the results of black hole- neutron star merger calculations we estimate that only a small fraction ( ∼ 0.02) of these systems can potentially produce a short-hard gamma ray burst. Only for high initial black hole spin parameters (aspin> 0.6) can this fraction be significant ( ∼ 0.35). For the majority of black holes in black hole-neutron star systems the spin magnitude is increased to aspin> 0.1 and the degree of spin misalignment (itilt ∼ 40 ◦ ) is sufficiently high that the predicted gravitational radiation signal significantly differs from that for non rotating black holes. However, due to the (i) insensitivity of signal detection techniques to the black hole spin and the (ii) predicted overall low contribution of black hole binaries to the signal we find that the detection of gravitational waves are not greatly inhibited by current searches with non spinning templates. It is pointed out that the detection of a black hole- black hole binary inspiral system with LIGO or VIRGO may provide a direct measurement of the initial spin of a black hole

    Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    No full text
    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS

    Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    No full text
    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS
    corecore