44 research outputs found

    Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    Get PDF
    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered

    Climate-Induced Landsliding within the Larch Dominant Permafrost Zone of Central Siberia

    Get PDF
    Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62 000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and Gravity Recovery and Climate Experiment satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with t (max) > 0 deg C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes

    Tree Wave Migration Across an Elevation Gradient in the Altai Mountains, Siberia

    Get PDF
    The phenomenon of tree waves (hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine (Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. 19 Time series of high-resolution satellite scenes (from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 15526 m (or 3.7 m yr -1) and crown closure increased (about 3590). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the ribbon zone was approximately 2.5 times (5060 vs 2120 ha -1) higher then within the hedges zone. During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment and recent tree growth rate for 50 year old trees was about twice higher than recorded for similarly aged trees at the beginning of the 20th century. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountain

    Wildfires in Northern Siberian Larch Dominated Communities

    Get PDF
    The fire history of the northern larch forests within the permafrost zone in a portion of northern Siberia (approx 66 deg N, 100 deg E) was studied. Since there is little to no human activities in this area fires within the study area were mostly caused by lightning. Fire return intervals (FRI) were estimated based on burn marks on tree stems and dates of tree natality. FRI values varied from 130 yr to 350 yr with 200 +/- 50 yr mean. In southerly larch dominated communities FRI was found to be shorter (77 +/- 20 yr at approx 61 deg. N, and 82 +/- 7 at 64 deg N), and longer at the northern boundary (approx 71 deg) of larch stands (320 +/- 50 yr). During the Little Ice Age period in the 16th to 18th centuries FRI was approximately twice as long as recorded in this study. Fire caused changes in the soil including increases in soil drainage and permafrost thawing depth and a radial growth increase of about 2 times (with more than 6 times observed). This effect may simulate the predicted warming impact on the larch growth in the permafrost zone

    Birch Stands Growth Increase in Western Siberia

    Get PDF
    Birch (Betula pendula Roth) growth within the Western Siberia forest-steppe was analyzed based on long-term (1897-2006) inventory data (height, diameter at breast height [dbh], and stand volume). Analysis of biometry parameters showed increased growth at the beginning of twenty-first century compared to similar stands (stands age = 40-60 years) at the end of nineteenth century. Mean height, dbh, and stem volume increased from 14 to 20 m, from 16 to 22 cm, and from approx. 63 to approx. 220 cu m/ha, respectively. Significant correlations were found between the stands mean height, dbh, and volume on the one hand, and vegetation period length (r(sub s) = 0.71 to 0.74), atmospheric CO2 concentration (r(sub s) = 0.71 to 0.76), and drought index (Standardized Precipitation-Evapotranspiration Index, r(sub s) = 0.33 to 0.51) on the other hand. The results obtained have revealed apparent climate-induced impacts (e.g. increase of vegetation period length and birch habitat drying due to drought increase) on the stands growth. Along with this, a high correlation of birch biometric parameters and [CO2] in ambient air indicated an effect of CO2 fertilization. Meanwhile, further drought increase may switch birch stand growth into decline and greater mortality as has already been observed within the Trans-Baikal forest-steppe ecotone

    G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Get PDF
    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation in the CONUS and Mexico in support of NASA's Carbon Monitoring System (CMS) and AMIGA-Carb (AMerican Icesat Glas Assessment of Carbon). For NASA's CMS, wall-to-wall G-LiHT data have been acquired over intensive study sites with historic LiDAR datasets, dense inventory data, stem maps and flux tower observations. For AMIGA-Carb, G-LiHT transects have been acquired over ICESat tracks and USDA-FS inventory plots throughout the CONUS, and similar data will be acquired in Mexico during 2013. This talk will highlight recent science results from continental-scale transects landscape-scale deployments of G-LiHT, as well as seasonal forest dynamics from repeat pass G-LiHT acquisitions

    Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    Get PDF
    Fire history within the northern larch forests of Central Siberia was studied (65 + deg N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 49 years (based on fire scars) and 106 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase and observed to be about 80 years at 64 deg N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approximately 71 deg + N). Northward FRI increase correlated with incoming solar radiation (r = 0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase

    Frailty, lifestyle, genetics and dementia risk.

    Get PDF
    OBJECTIVE: To optimise dementia prevention strategies, we must understand the complex relationships between lifestyle behaviours, frailty and genetics. METHODS: We explored relationships between frailty index, healthy lifestyle and polygenic risk scores (all assessed at study entry) and incident all-cause dementia as recorded on hospital admission records and death register data. RESULTS: The analytical sample had a mean age of 64.1 years at baseline (SD=2.9) and 53% were women. Incident dementia was detected in 1762 participants (median follow-up time=8.0 years). High frailty was associated with increased dementia risk independently of genetic risk (HR 3.68, 95% CI 3.11 to 4.35). Frailty mediated 44% of the relationship between healthy lifestyle behaviours and dementia risk (indirect effect HR 0.95, 95% CI 0.95 to 0.96). Participants at high genetic risk and with high frailty had 5.8 times greater risk of incident dementia compared with those at low genetic risk and with low frailty (HR 5.81, 95% CI 4.01 to 8.42). Higher genetic risk was most influential in those with low frailty (HR 1.31, 95% CI 1.22 to 1.40) but not influential in those with high frailty (HR 1.09, 95% CI 0.92 to 1.28). CONCLUSION: Frailty is strongly associated with dementia risk and affects the risk attributable to genetic factors. Frailty should be considered an important modifiable risk factor for dementia and a target for dementia prevention strategies, even among people at high genetic risk

    High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice

    Get PDF
    Research in neuroscience increasingly relies on the mouse, a mammalian species that affords unparalleled genetic tractability and brain atlases. Here, we introduce high-yield methods for probing mouse visual decisions. Mice are head-fixed, facilitating repeatable visual stimulation, eye tracking, and brain access. They turn a steering wheel to make two alternative choices, forced or unforced. Learning is rapid thanks to intuitive coupling of stimuli to wheel position. The mouse decisions deliver high-quality psychometric curves for detection and discrimination and conform to the predictions of a simple probabilistic observer model. The task is readily paired with two-photon imaging of cortical activity. Optogenetic inactivation reveals that the task requires mice to use their visual cortex. Mice are motivated to perform the task by fluid reward or optogenetic stimulation of dopamine neurons. This stimulation elicits a larger number of trials and faster learning. These methods provide a platform to accurately probe mouse vision and its neural basis

    Wildfires Dynamics in Siberian Larch Forests

    No full text
    Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45°–73° N) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996–2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = −0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect.  Fire return interval increased from 80 years at 62° N to 200 years at the Arctic Circle (66°33’ N), and to about 300 years near the northern limit of closed forest stands (about 71°+ N). That increase was negatively correlated with incoming solar radiation (r = −0.95)
    corecore