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Abstract. The fire history of the northern larch forests within the permafrost zone in a portion of northern 1 

Siberia (~66ºN, 100°E) was studied. Since there is little to no human activities in this area fires within the 2 

study area were mostly caused by lightning. Fire return intervals (FRI) were estimated based on burn 3 

marks on tree stems and dates of tree natality. FRI values varied from 130 yr to 350 yr with 200±50 yr 4 

mean. In southerly larch dominated communities FRI was found to be shorter (77±20 yr at ~61°N, and 5 

82±7 at 64°N), and longer at the northern boundary (~71°) of larch stands (320 ±50 yr). During the Little 6 

Ice Age period in the 16th to 18th centuries FRI was approximately twice as long as recorded in this 7 

study. Fire caused changes in the soil including increases in soil drainage and permafrost  thawing depth 8 

and a radial growth increase of about 2 times (with more than 6 times observed). This effect may simulate 9 

the predicted warming impact on the larch growth in the permafrost zone. 10 

 11 
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1. Introduction 1 

Larch (Larix spp.) forests compose about 43% of Russian forests. Larch stands are dominants from the 2 

Yenisei ridge on the west (~92°E longitude) to the Pacific Ocean and from Baikal Lake to the south to 3 

73rd parallel to the north. Wildfires are typical for this area with the majority occurring as ground fires 4 

due to low forest crown closure. Larch is a pyrophytic species; since fires promote the establishment of 5 

larch regeneration and reduces between species competition. Mineralized burned surfaces, enriched with 6 

nutrients are favorable for germination of the small and light weight larch seeds. The expanse of larch 7 

forests is at present considered to be a carbon sink (Shvidenko et al 2007). However, an increase in fire 8 

frequency in response to observed climate changes in the area may result in conversion of this area to a 9 

source for greenhouse gases (IPCC 2007). Changes in air temperature, permafrost depth and extent may 10 

affect wildfire frequency (Kharuk et al, 2008). In spite of the fact that larch dominated forests occupy 11 

about 70% of permafrost areas in Siberia, data on fire occurrence in larch forests is presented by only a 12 

few publications (Vaganov and Arbatskaya 1996, Kovacs et al 2004; Kharuk et al 2005, 2008; 13 

Schepaschenko et al, 2008; Wallenius et al, 2011). For larch dominated areas of Central Siberia average 14 

FRI was found 82±7 years (~64°N latitude), and 77±20 years for the southward “larch-mixed taiga” 15 

ecotone. For the northern boundary of larch forests (~71°N) FRI value was estimated to be 320 ±50 years 16 

(Kharuk et al 2011). For the north-east larch forests of Siberia FRI was found to be, depending on site, 17 

50-80 and 80-120 yr (Schepaschenko et al, 2008). For  southern Central Siberia Wallenius et al. (2011) 18 

reported a gradual increase of FRI from 52 years in the 18th century to 164 years in the 20th.  19 

The purpose of this work is to investigate wildfire occurrence in the central part of larch dominated 20 

communities (figure 1).  21 

2. Study area 22 

The test sites were located within the Kochechum River watershed. The Kochechum River is a tributary 23 

of the Nizhnyaya (lower) Tunguska River which turns northwest and flows into the Yenesei River. This is 24 

area is the northern part of the central Siberian plateau with gentle hills with elevations up to 1000 m 25 

(figure 1). 26 

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=U14LCOmke7F9E6oj1aL&author_name=Wallenius,%20T&dais_id=14626550�
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4 

 

This is a permafrost area with a severe continental climate. Mean summer (JJA) and winter (DJF) 1 

temperatures are +12°С and –35°С respectively. Mean summer and annual precipitation are 180 and 390 2 

mm, respectively (these values are means over the years 1997–2006 averaged for 1.5º х 2.5º grid cells and 3 

covering all test sites; figure 1; WWW1).  4 

The forests are composed of larch (Larix gmelini Rupr.) with a mixture of birch (Betula pendula 5 

Roth). Typical ground cover is composed of lichen and moss. Bushes were represented by Betula nana, 6 

Salix sp, Ribes sp, Rosa sp., Juniperus sp, Vaccinium sp, and Ledum palustre L. (Labrador tea). 7 

The wildfires across this landscape occur as ground fires due to low crown closure. The seasonal 8 

fires distribution is a single-mode (late May–June) with rare late i.e., (August–early September) fires 9 

(Sofronov et al 1999, Kharuk et al 2007). Periodic stand-replacing fires cause a mosaic of the (semi) 10 

even-age stands, embedded with older trees that survived the fire. 11 

 12 

 13 

 14 

Figure 1. Map of north central Siberia with the area of this investigation shown as a rectangle. Areas 15 

marked 1–3 are sites of earlier studies (Kharuk et al 2007, 2008, Kharuk et al 2011). Inset: Landsat image 16 
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showing locations (1–9) of test sites along the Kochechum River. Measurements of older trees from a 1 

study of long term wildfire trends were acquired in areas denoted by boxes. 2 

3. Materials and method  3 

3.1. Tree sampling  4 

The samples were collected in 2001 and 2007 within the burned areas of larch forests along the river.  5 

There are no roads within the study area, and rivers provide the best access (figure 1). Temporary test 6 

sites were established within burned areas within about 1.0 km from the river and within a 160–420 m 7 

elevation range. Disks of larch bole cross sections for tree ring analysis were cut at the root neck level.  8 

Sampled trees included specimens of the dominant (even-age) trees, as well as older trees that survived 9 

stand replacing fires. 10 

Trees within test sites 1–9 (figure 1) were sampled and used for the fire return interval (FRI) 11 

analysis. In addition to this, older trees on supplementary sites were sampled (figure 1) for the purpose of 12 

estimation of long-term trends in fire frequency. The sample consisted of 58 trees.  13 

3.2. Sample analysis  14 

Tree ring widths were measured with a precision of 0.01 mm using the well-known LINTAB-III 15 

instrument.  The dates of fires were estimated based on a master chronology constructed for northern 16 

larch forests (Naurzbaev et al 2004). Mean correlation with the master chronology was 0.54 which is 17 

satisfactory for our purposes. The COFECHA (Holmes 1983) and TSAP (Rinn 1996) programs were used 18 

to detect double counted and missing rings. Fire-caused tree ring deletions were found only for 3 cases 19 

(out of about 75 analyzed).  Relevant dates of fire events were adjusted based upon the master 20 

chronology.  21 

3.3. Fire return interval calculation 22 

Fire return intervals (FRI) were routinely estimated by tree ring calculation between consecutive fire 23 

scars: Di – Di-1, where Di, Di-1 – dates of i and i-1 fires.  Since many sampled trees have only a single burn 24 

mark, the dates of tree natality were included into the FRI calculation where appropriate as described 25 

below. 26 
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It is known that within larch-dominated communities fires are mostly stand-replacing, and 1 

promote the formation of even-aged stands. Fresh burns with mineralized soil are quickly occupied by 2 

dense regeneration. Over time, development of a thick moss and lichen cover limits larch regeneration, 3 

(Kharuk et al 2008). Larch produce seeds annually with good harvests occurring on 5–7 year cycles 4 

(Forest Ecosystems 2002). Furthermore, 2–3 year old cones are known to be viable seed sources 5 

(Sofronov et al 1999). Importantly, ground fires regularly do not damage cones, leaving fire-killed stands 6 

as a source of seed. Thus both, tree natality dates and the dates of fires were used for FRI calculations.  7 

FRI were determined for each individual tree within test sites and then the mean FRI for a given site was 8 

calculated.  9 

Long-term history was based on fire events were for the period spanning the  17th century to 2007. To 10 

exclude the impact of a decreasing sample size for older stands i.e., “fading effect” the sample size was 11 

adjusted by tree age within groups.  Stand replacing and non-stand replacing fires were investigated.   12 

 13 

Along the burnmarks, “tree ring width growth accelerations” were also determined.  “Growth 14 

accelerations” were identified by the following procedure. 1. Expert visual analysis of increase in tree 15 

ring width.2. Calculation of the mean tree ring width 20 years before and 20 years after the increases 16 

began. This reference period (20 yr) approximately corresponds to the period of post-fire tree ring 17 

increment increases. 3. If the ratio (mean tree ring width after begining of tree width increase/mean tree 18 

ring width before tree width increase) > 2.0, the observed “growth acceleration” was considered 19 

significant. 4The date of the “growth increase” was compared with the air temperature record. It is known 20 

that for the boreal-forest zone, radial growth has been closely connected with temperature variability 21 

(Esper et al., 2010) . If that date coincided with air temperature increase, that particular  “growth 22 

increment increase” was excluded from furthur analysis (because of the possibility of climate-driven tree 23 

ring increase).  The above-mentioned “growth acceleration” dates were considered as a possible 24 

additional indirect sign of wildfire impact.  It’s known that trees that survive fires (including those which 25 

do not have burnmarks) experienced a period of growth increase (e.g., Sofronov et al, 1999).  26 

 27 
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Error analysis  1 

Including the tree natality date into FRI analysis increased errors due to the 0–5 years lag of the post-fire 2 

tree establishment. The natality date also has to be adjusted to the “stump age”, i. e., the difference of real 3 

and measured stump height tree age. Even if a tree was cut at the root neck level, this difference can be 2–4 

5 yr. In some cases disks sampled at the root neck level were not suitable for analysis; in these cases disks 5 

were sampled higher up the bole. This procedure entailed about 5 additional years of uncertainty. The 6 

post-fire regeneration had a high growth increment the first 15–20 yr, which gradually decreased due to 7 

increasing competition and decreasing active root layer depth (Sofronov et al 1999).  In summary, the 8 

maximum total error was estimated to be 15 years.  9 

4. Results 10 

4.1. Fire return intervals  11 

Dates of tree natality and fire events are presented in figure 2. FRI values for different test sites are 12 

considerably variable, i.e,  from 131 to 349 years (with mean of 200±51 year; table 1).  13 

 14 
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 1 

Figure 2. Fire events chronology for the test sites 1–9 (locations are shown in figure 1). Light bars 2 

indicate tree natality dates, heavy bars indicate fire events, and diamonds indicate dates of initiation of 3 

radial growth acceleration.  4 
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Table 1. Mean FRI for nine study sites. 1 

Test sites  # Mean FRI Sample size (N) 

1 134 5 

2 203 2 

3 138 9 

4 165 2 

5 349 5 

6 278 17 

7 142 4 

8 256 3 

9 131 4 

Overall Mean 200±51 (p≥0.05) 

  2 

4.2. Long-term fire events history  3 

The long-term fire event history (for the 17th through 20th centuries) was developed based on data for 4 

trees with natality dates before 1800, 1700 and 1600 yr, respectively (figure 3, table 2). To exclude the 5 

fading effect data were adjusted for tree natality dates: >200 yr, >300 yr and >400yr for 19th to 20th, 18th 6 

to 20th, and 17th to 20th century comparisons, respectively. 7 

 8 
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 1 

Figure 3. The data set (N=58) for comparison of number of fire events for different time periods. Light 2 

and heavy bars show dates of natality and fire events, respectively. Synchronous fire events were counted 3 

as a single fire event. The vertical lines along the abscissa denote all fire occurrences.  4 
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The number of wildfires in the 20th century increased relative to the 19th century (13 vs 8) (table 1 

2; N=58). For 18th, 19th and 20th centuries (N=33) fires number were 1, 6 and 9, respectively (table 2; 2 

N=33). Results for period 17th–20th centuries also showed an increase of fire events from  the 17th to 3 

20th centuries (table 2; N=14). The minimum number of wildfires coincided with the air temperature 4 

decrease during the Little Ice Age period (i.e., early 17th to early 19th centuries; figure 4). 5 

 6 

Figure 4. Individual (gray lines) and running mean (with 50 yr window; dense solid line) radial increment 7 

data of sampled trees (N=58), dates of fire events (upper scale), and air temperature deviations for the 8 

northern Siberia and northern hemisphere (grey thin and bold solid lines; Briffa 2000).  9 

 10 

 11 

 12 

 13 

Table 2. Number of wildfires during 17th – 20th centuries 14 

Century Number of wildfires during 
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a given century 
20th 13 9 6 
19th 8 6 2 
18th - 1 0 
17th - - 2 

Sample size (N) 58 33 14 
 1 

5. Discussion 2 

5.1. FRI 3 

The majority of the fires in the larch communities we studied are stand-replacing. This was revealed by 4 

the fine-grained mosaic of (semi) even age stands within forested landscapes. For the types of forest 5 

communities the mean FRI can only be reconstructed using age-class analysis or fire records (Sannikov 6 

and Goldammer 1996, Johnson and Miyanishi 2001). However, in our case the presence of fire scars 7 

indicated that non-stand replacing fires also occurred (figure 2).  8 

FRI data for different sites within the study area (figure 1) differed by more than two times,  from 9 

131 to 349 years with a mean of 200±51 years (table 1). The reason for this is that fires are rare events 10 

within the investigated area. The other cause is the non-uniformity of the topography and land cover 11 

within the study area. It is known that fire frequency is different for sunlit and shadowed slopes, as well 12 

as for bog areas (Beaty and Taylor 2001, Rollins et al 2002; Kharuk et al 2005, 2008). Meanwhile, even 13 

the lowest FRI value (131 years) considerably exceeds reported data for adjacent southward forests (80–14 

90 years; Vaganov and Arbatskaya 1996, Kharuk et al 2005). Mean FRI values (200±51yr) exceeds 15 

published FRI values for the boreal conifer forests (60–150 years: Payette 1992, Larsen 1997, Swetnam 16 

1996, Sannikov and Goldammer 1996). Very long FRIs (up to 300 years) were reported for fire-protected 17 

forests in Europe and North America (Weir et al 2000, Heyerdahl et al 2001, Bergeron et al 2004, 18 

Buechling and Baker 2004). Evidently this is not the case, because within our study area fires were never 19 

suppressed. Low fire frequency is not favorable for the larch forests, because fires promote larch 20 

regeneration growth, i.e., larch is a ‘‘pyrophytic’’ species. The main tree growth constraints are  21 

permafrost thawing depth and soil drainage. Depth of seasonal thawing is dependent on exposition, moss-22 

and-lichen layer thickness, and fire history. Fires not only increase permafrost thawing depth but also 23 
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increase soil drainage which is very important to larch growth. With time, an increase in the thermal 1 

insulator layer composed of the on-ground moss and lichen cover caused upward migration of the 2 

permafrost layer, and compression of the active root zone within a progressively decreasing upper layer. 3 

Fires also thin regeneration, decreasing within-species competition, and, thus, promoting tree growth 4 

because larch is an extremely shade-intolerant species.  5 

5.2. Long-term trends in wildfire number 6 

The advanced age of some sampled trees (>400 years; figure 3) allows estimation of the fire history 7 

within the study area back to the Little Ice Age period. Dendrochronology data showed that cooling 8 

during the Little Ice Age period caused depression in the tree annual radial growth (figure 4). Fire event 9 

numbers since the 17th century approximately coincided with air temperature deviations, increasing with 10 

warming since the second half of 19th century (figure 4, table 2). For example, fires numbers increased 11 

from 8 in the 19th century to 13 in the 20th century. This phenomenon could not be attributed to 12 

decreased samples of older trees, i.e., “fading effect”, since sample sizes were adjusted by the natality 13 

dates.  14 

Local asynchrony of radial increment growth and temperature deviations on Fig. 4 could be 15 

attributed to the fire-induced increase of radial growth, as well as to the increment decrease during lag 16 

between fire event and increment increase begin (which is about 7-10 yr, Fig. 5). Thus, in the middle of 17 

20th century wildfires were observed within the majority of the test sites (Fig. 2). The other reason is a 18 

“divergence phenomenon”, i.e. growth-vs.-temperature divergence (D'Arrigo et al, 2008; Esper et al, 19 

2010).    20 

These estimates coincide with earlier reported data on fire frequency increase in the 20th vs 19th 21 

centuries for the southerly larch and mixed forests (sites 2 and 1 on the figure1, respectively; Kharuk et al 22 

2008). The causes of this trend can be both, natural and anthropogenic. Earlier it was shown that for site 1 23 

(figure 1) the FRI decrease was caused by both, natural (warming) and anthropogenic causes. On site 2 24 

(figure 1) FRI decrease was attributed to temperature increase mainly because the leading factor of fire 25 

ignition on the remote northern forests is lightning (>90% of cases in the northern Evenkia, whereas 26 

within southern forests >80% of fires are anthropogenic-caused; Kovach et al 2004). This is also true for 27 
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our study site since the remoteness of the area, as well as low population density in general; most of the 1 

fires are of natural origin. Similar observations (FRI increase since Little Ice Age) were made for the 2 

northern boundary of larch forests (site 3 on figure 1; Kharuk et al 2011). All these data support the 3 

suggestion that observed climate change will lead to an increase in fire frequency (Gillett et  a l  2004,  4 

Bergeron et al 2004, Girardin et al 2009). Comparison of FRI along the meridian (figure 1) showed a 5 

northward increase of FRI: 77±20 years at ~61°N (site 1), 82±7 at 64°N (site 2), 200±51 years at about 6 

66°N, and 320±50 years at the northern boundary of larch dominant communities (71°N, site 3). The 7 

main reason of the northward FRI increase is less incoming solar radiation and, consequently, shortening 8 

of the fire-danger period. 9 

5.3. Burns as a “simulator” of future warming  10 

Areas experiencing wildfires may be considered as a simulator of predicted warming impacts on northern 11 

forests. Indeed, in addition to soil enrichment with nutrients and decreased competition, fires cause an 12 

increase of permafrost thawing depth by a factor of 3 to 5 (Kharuk et al 2008), and increased soil 13 

drainage. Trees that survived wildfire showed an approximately double (1.93; p>0.95) increase of radial 14 

increment (figure 5). Comparison was made for the period for 25 (20[kjr1]??) years before and after the 15 

fire (periods of +/-5 yr around zero were deleted to exclude effects of direct fire damage on trees. Some 16 

trees showed an extremely high response to fire affects. For example, the tree cross section shown on 17 

figure 5 showed an increase of radial growth about ten times in comparison with background 18 

observations. This tree was sampled at a  latitude near the Polar Circle.  19 

Generally speaking, growth increases following fire scars should be measured along radii very 20 

most distant from the wound itself. But in our case we compare 37 specimens with the same 21 

pattern of fire damage; one of which shows outstanding increment growth (about ten times 22 

higher than background set; Fig. 5). The basic difference of this specimen with others sampled was the 23 

depth of soil thawing (about 1.5 m vs <0.3-0.5 m for the other specimens), and good drainage since that 24 

tree was growing on the southern river bank. It is  known that  larch prefer drained soils (Schepaschenko 25 

et al, 2008). The observed radial growth increase (and, consequently, increased carbon sequestration) may 26 

be an alternative to the scenario of forests in climate-induced permafrost transformation areas becoming a 27 

greenhouse gases source (IPCC 2007). Thus, the vegetation dynamics and productivity of the burned 28 

areas deserves future investigations.  29 

 30 
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Figure 5. Diagrams for (1) individual tree ring widths (N=36) and (3) mean tree ring widths before and 2 

after fire; (2) – tree ring width for a specimen with an extremely high post-fire growth increment (inset). 3 

Data were compiled based on fires in 20th century (figure 2). Dates of fires were set to “zero” point. Note 4 

that post-fire growth increase has a lag about 7-10 yr.  5 

5.4. Indirect sign of wildfires 6 

Tree ring growth history showed periods of radial growth accelerations (i.e., tree ring width increase; 7 

figure 2–4). These increases are commonly considered to be climate driven (e.g., Shiyatov 2003) and may 8 

also contain information on fire events.   The observed growth accelerations may also be caused by the 9 

above mentioned fire-caused soil melioration. Differentiation of these effects could be made based on the 10 

comparison with air temperature anomalies. The fire-induced origin of the acceleration is supported by 11 

the fact that in some cases the date of accelerations coincides with the burn marks on the trees from the 12 

same test site (figure 2).These effects deserved future investigations based on a larger sample sizes.  13 
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6. Conclusions 1 

FRI on the study area is considerably longer than in southerly territories. Along the 100 degree meridian 2 

(figure 1) FRI values increased northward, 77±20 years at ~61°N (site 1), 82±7 years at 64°N (site 2), 3 

200±51 years at about 66°N, and 320 ±50 years at the northern boundary of larch stands (~71°N). The 4 

number of fire events during the Little Ice Age period (17–18th centuries) was approximately half the 5 

number observed in 19–20th centuries. Fire-caused soil melioration (basically soil drainage and thawing 6 

depth increases) caused a radial growth increase about 2 times (with >6 times in extremes). This effect 7 

may simulate predicted warming impact on the larch growth in the permafrost zone. 8 
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