15 research outputs found

    Synthetic Alkaloid Treatment Influences the Intestinal Epithelium and Mesenteric Adipose Transcriptome in Holstein Steers

    Get PDF
    Holstein steers (n = 16) were used to determine if a synthetic alkaloid, bromocriptine, would alter the transcriptome of the small intestine and adjacent mesenteric adipose. On d 0, steers were assigned to one of two treatments: control (CON; saline only) or bromocriptine (BROMO; 0.1 mg/kg BW bromocriptine mesylate injected intramuscularly every 3 d for 30 d). Steers were slaughtered and midpoint sections of jejunal epithelium and associated mesenteric fat were collected for RNA isolation. Transcriptome analysis was completed via RNA-Seq to determine if BROMO differed compared with CON within intestinal epithelium or mesenteric adipose mRNA isolates. Differential expression thresholds were set at a significant P-value (P \u3c 0.05) and a fold change ≥ 1.5. Only two genes were differentially expressed within the intestinal epithelium but there were 20 differentially expressed genes in the mesenteric adipose tissue (six up regulated and 14 down regulated). Functions related to cell movement, cell development, cell growth and proliferation, cell death, and overall cellular function and maintenance were the top five functional molecular categories influenced by BROMO treatment within the intestinal epithelium. The top molecular categories within mesenteric adipose were antigen presentation, protein synthesis, cell death, cell movement, and cell to cell signaling and interaction. In conclusion, BROMO treatment influenced the intestinal epithelium and mesenteric adipose transcriptome and identified genes and pathways influential to the effects associated with alkaloid exposure which are important to beef production

    Effect of consuming endophyte-infected fescue seed on transcript abundance in the mammary gland of lactating and dry cows, as assessed by RNA sequencing

    Get PDF
    Ergot alkaloids in endophyte-infected grasses inhibit prolactin secretion and reduce milk production in lactating cows. However, we previously showed that prepartum consumption of infected seed throughout the dry period did not inhibit subsequent milk production and prior exposure to bromocriptine (ergot peptide) actually increased production in the next lactation. To identify changes in the transcriptome and molecular pathways mediating the mammary gland's response to ergot alkaloids in the diet, RNA sequencing (RNA-seq) was performed on mammary tissues obtained from 22 multiparous Holstein cows exposed to 1 of 3 treatments. Starting at 90 ± 4 d prepartum, cows were fed endophyte-free fescue seed (control; CON), endophyte-free fescue seed plus 3×/wk subcutaneous injections of bromocriptine (BROMO; 0.1 mg/kg of BW), or endophyte-infected fescue seed (INF) as 10% of the diet. Cows were dried off 60 ± 2 d prepartum. Mammary biopsies from 4 (BROMO, INF) or 5 (CON) cows/treatment at each of the 3 phases were obtained: 7 d before dry off during the initial lactation (L1), mid-dry period (D), and 10 d postpartum (L2). Although tissue from the same cow was preferentially used at 3 phases (L1, D, L2), tissue from additional cows were used to as necessary to provide RNA of sufficient quality. Individual samples were used to generate individual RNA-seq libraries. Normalized reads of the RNA-seq data were organized into technical and biological replicates before processing with the RSEM software package. Each lactation phase was processed separately and genes that differed between any of 3 treatments were identified. A large proportion of genes differentially expressed in at least 1 treatment (n = 866) were found to be similarly expressed in BROMO and INF treatments, but differentially expressed from CON (n = 575, total for 3 phases). Of genes differentially expressed compared with CON, 104 genes were common to the L1 and L2 phases. Consistent with the production findings, networks most affected by treatments in L1 and L2 included lipid metabolism, small molecule biochemistry, and molecular transport, whereas networks related more to developmental and cellular functions and maintenance were evident during D phase. Similar patterns of expression in BROMO and INF during late and early lactation suggest involvement of similar cell signaling pathways or mechanisms of action for BROMO and INF and the importance of prolactin messaging pathways

    Investigation of rumen long noncoding RNA before and after weaning in cattle

    No full text
    This study aimed to identify long non-coding RNA (lncRNA) from the rumen tissue in dairy cattle, explore their features including expression and conservation levels, and reveal potential links between lncRNA and complex traits that may indicate important functional impacts of rumen lncRNA during the transition to the weaning period. A total of six cattle rumen samples were taken with three replicates from before and after weaning periods, respectively. Total RNAs were extracted and sequenced with lncRNA discovered based on size, coding potential, sequence homology, and known protein domains. As a result, 404 and 234 rumen lncRNAs were identified before and after weaning, respectively. However, only nine of them were shared under two conditions, with 395 lncRNAs found only in pre-weaning tissues and 225 only in post-weaning samples. Interestingly, none of the nine common lncRNAs were differentially expressed between the two weaning conditions. LncRNA averaged shorter length, lower expression, and lower conservation scores than the genome overall, which is consistent with general lncRNA characteristics. By integrating rumen lncRNA before and after weaning with large-scale GWAS results in cattle, we reported significant enrichment of both pre- and after-weaning lncRNA with traits of economic importance including production, reproduction, health, and body conformation phenotypes. The majority of rumen lncRNAs are uniquely expressed in one of the two weaning conditions, indicating a functional role of lncRNA in rumen development and transition of weaning. Notably, both pre- and post-weaning lncRNA showed significant enrichment with a variety of complex traits in dairy cattle, suggesting the importance of rumen lncRNA for cattle performance in the adult stage. These relationships should be further investigated to better understand the specific roles lncRNAs are playing in rumen development and cow performance.https://doi.org/10.1186/s12864-022-08758-

    A heat-map of the rumen microbiota composition at a genus level.

    No full text
    <p>The 26 genera that shared by all samples tested (core microbiome) were displayed (<i>N</i> = 4). The scale was the percentage composition (log 2) based on the 16S sequences analyzed using RDP Classifier. A 72 h butyrate infusion induced a profound change in the rumen microbial composition, which allowed all 4 samples from this time point to be clustered using a Hierarchical Competitive Learning algorithm (HCL).</p

    Principal Coordinates Analysis of weighted UniFrac values between pre-infusion (0 h; blue) and 72 h infusion (red) (<i>N</i> = 4).

    No full text
    <p>(A) Visualization of the first two dimensions (un-scaled); (B) Visualization of the first and third dimensions (un-scaled); (C) Visualization of the second and third dimensions (un-scaled); (D) in 3-D.</p

    Temporal profiles of the relative abundance (% reads) of Operational Taxonomical Units (OTUs) of Clusters #2 and 3.

    No full text
    <p>Clusters were generated based on Self Organizing Maps (SOM). Group Mean represents mean normalized percentages of OTUs of 4 samples in this cluster (<i>N</i> = 4). A temporal profile of representative OTUs (OTU#65 and OTU#20) that belonged to clusters#2 and 3, respectively was shown as a reference. Error bars represent SD of 4 samples.</p

    The ruminal pH and volatile fatty acid concentrations (mM) in response to butyrate infusion.

    No full text
    <p>The numbers denote mean ± SD (<i>N</i> = 4).</p><p>*<i>P</i><0.05 based on paired <i>t</i>-test. The pairs are pre- and post-infusion values of the same cow.</p
    corecore