40 research outputs found

    BPTF promotes tumor growth and predicts poor prognosis in lung adenocarcinomas.

    Get PDF
    BPTF, a subunit of NURF, is well known to be involved in the development of eukaryotic cell, but little is known about its roles in cancers, especially in non-small-cell lung cancer (NSCLC). Here we showed that BPTF was specifically overexpressed in NSCLC cell lines and lung adenocarcinoma tissues. Knockdown of BPTF by siRNA significantly inhibited cell proliferation, induced cell apoptosis and arrested cell cycle progress from G1 to S phase. We also found that BPTF knockdown downregulated the expression of the phosphorylated Erk1/2, PI3K and Akt proteins and induced the cleavage of caspase-8, caspase-7 and PARP proteins, thereby inhibiting the MAPK and PI3K/AKT signaling and activating apoptotic pathway. BPTF knockdown by siRNA also upregulated the cell cycle inhibitors such as p21 and p18 but inhibited the expression of cyclin D, phospho-Rb and phospho-cdc2 in lung cancer cells. Moreover, BPTF knockdown by its specific shRNA inhibited lung cancer growth in vivo in the xenografts of A549 cells accompanied by the suppression of VEGF, p-Erk and p-Akt expression. Immunohistochemical assay for tumor tissue microarrays of lung tumor tissues showed that BPTF overexpression predicted a poor prognosis in the patients with lung adenocarcinomas. Therefore, our data indicate that BPTF plays an essential role in cell growth and survival by targeting multiply signaling pathways in human lung cancers

    TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer

    Get PDF
    Background Abnormal methylation of TNFRSF10C was found to be associated with different types of cancers, excluding colorectal cancer (CRC). In this paper, the performance of TNFRSF10C methylation in CRC was studied in two stages. Method The discovery stage was involved with 38 pairs of CRC tumor and paired adjacent non-tumor tissues, and 69 pairs of CRC tumor and paired adjacent non-tumor tissues were used for the validation stage. Quantitative methylation specific PCR (qMSP) method and percentage of methylated reference (PMR) were used to test and represent the methylation level of TNFRSF10C, respectively. A dual-luciferase reporter gene experiment was conducted to evaluate the promoter activity of TNFRSF10C fragment. Results A significant association of TNFRSF10C promoter hypermethylation with CRC was found and validated (discovery stage: 24.67 ± 7.52 vs. 3.36 ± 0.89; P = 0.003; validation stage: 31.21 ± 12.48 vs. 4.52 ± 1.47; P = 0.0005). Subsequent analyses of TCGA data among 46 pairs of CRC samples further confirmed our findings (cg23965061: P = 4E − 6; cg14015044: P = 1E − 7). Dual-luciferase reporter gene assay revealed that TNFRSF10C fragment was able to significantly promote gene expression (Fold change = 2.375, P = 0.013). Our data confirmed that TNFRSF10C promoter hypermethylation can predict shorter overall survival of CRC patients (P = 0.032). Additionally, bioinformatics analyses indicated that TNFRSF10C hypermethylation was significantly associated with lower TNFRSF10C expression. Conclusion Our work suggested that TNFRSF10C hypermethylation was significantly associated with the risk of CRC

    Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model

    No full text
    Abstract Background Adipose-derived mesenchymal stem cell (ASCs) exerts immunomodulatory roles in asthma. However, the underlying mechanism remains unclear. The present study aimed to explore the effects and mechanisms of ASCs on chronic asthma using an ovalbumin (OVA)-sensitized asthmatic mouse model. Methods Murine ASCs (mASCs) were isolated from male Balb/c mice and identified by the expression of surface markers using flow cytometry. The OVA-sensitized asthmatic mouse model was established and then animals were treated with the mASCs through intratracheal delivery. The therapy effects were assessed by measuring airway responsiveness, performing immuohistochemical analysis, and examining bronchoalveolar lavage fluid (BALF). Additionally, the expression of inflammatory cytokines and lgE was detected by CHIP and ELISA, respectively. The mRNA levels of serum indices were detected using qRT-PCR. Results The mASCs grew by adherence with fibroblast-like morphology, and showed the positive expression of CD90, CD44, and CD29 as well as the negative expression of CD45 and CD34, indicating that the mASCs were successfully isolated. Administering mASCs to asthmatic model animals through intratracheal delivery reduced airway responsiveness, the number of lymphocytes (P < 0.01) and the expression of lgE (P < 0.01), IL-1β (P < 0.05), IL-4 (P < 0.001), and IL-17F (P < 0.001), as well as increased the serum levels of IL-10 and Foxp3, and the percentage of CD4 + CD25 + Foxp3+ Tregs in the spleen, and reduced the expression of IL-17 (P < 0.05) and RORγ. Conclusions Intratracheal administration of mASCs alleviated airway inflammation, improved airway remodeling, and relieved airway hyperresponsiveness in an OVA-sensitized asthma model, which might be associated with the restoration of Th1/Th2 cell balance by mASCs

    Antiobesity, Antidiabetic, Antioxidative, and Antihyperlipidemic Activities of Bioactive Seaweed Substances

    No full text
    Bioactive seaweed substances such as alginate, carrageenan, agar, fucoidan, polyphenols, polyunsaturated fatty acids, amino acids, and protein have many physiological functions. They have been widely used in consumer products such as functional foods, marine nutraceuticals, biomedical materials, cosmetics, and many other products that offer health benefits, which are unique and different to those obtained from other sources. This chapter summarizes the antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of various bioactive seaweed substances

    The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels

    No full text
    Leptographium qinlingensis is a fungal associate of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandi) that must overcome the terpenoid oleoresin defenses of host trees. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include export and the use of these compounds as a carbon source. As one of the fungal cytochrome P450 proteins (CYPs), which play important roles in general metabolism, CYP51 (lanosterol 14-α demethylase) can catalyze the biosynthesis of ergosterol and is a target for antifungal drug. We have identified an L. qinlingensis CYP51F1 gene, and the phylogenetic analysis shows the highest homology with the 14-α-demethylase sequence from Grosmannia clavigera (a fungal associate of Dendroctonus ponderosae). The transcription level of CYP51F1 following treatment with terpenes and pine phloem extracts was upregulated, while using monoterpenes as the only carbon source led to the downregulation of CYP5F1 expression. The homology modeling structure of CYP51F1 is similar to the structure of the lanosterol 14-α demethylase protein of Saccharomyces cerevisiae YJM789, which has an N-terminal membrane helix 1 (MH1) and transmembrane helix 1 (TMH1). The minimal inhibitory concentrations (MIC) of terpenoid and azole fungicides (itraconazole (ITC)) and the docking of terpenoid molecules, lanosterol and ITC in the protein structure suggested that CYP51F1 may be inhibited by terpenoid molecules by competitive binding with azole fungicides

    Bartholin’s gland cyst caused by Sneathia amnii: a case report

    No full text
    Abstract Background Sneathia amnii is a conditional pathogen of the female genital tract that is involved in bacterial vaginosis and poor reproductive and perinatal outcomes. Few studies have reported subcutaneous cysts following invasive infection caused by S amnii. Case presentation Here we report the case of a 27-year-old woman who presented with Bartholin’s gland cyst due to S amnii infection, and was successfully treated with surgical neostomy and antibiotic agents. The isolate was gram-negative, bacillary, anaerobic, and was identified by polymerase chain reaction (PCR) amplification of the 16 S rRNA. Conclusions S amni is an important but underappreciated pathogen that needs further investigation. This report describes the microbial and pathogenic characteristics of S amnii and is expected to provide a valuable reference in obstetric and gynecologic clinical practice

    The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells

    No full text
    Abstract Background EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Methods Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Results Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. Conclusion NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B

    The Influence of Stand Structure on Understory Herbaceous Plants Species Diversity of Platycladus orientalis Plantations in Beijing, China

    No full text
    Species diversity is a crucial index used to evaluate the stability and complexity of forest ecosystems. Studying the relationship between stand structure and understory herbaceous plants species diversity is useful for managers to formulate the best forest structure optimization method with the goal of improving herbaceous species diversity. In this research, Platycladus orientalis plantations in Beijing were taken as the research object. Pearson&rsquo;s correlation analysis was used to explore the single-factor correlation between stand structure and understory herbaceous plants species diversity; furthermore, a typical correlation analysis and multiple linear regression were used to explore the multi-factor correlation and analyze the dominant stand structure parameters affecting understory herbaceous plants species diversity. In the range of stand structures studied, the results showed that canopy density was negatively correlated with the Shannon&ndash;Wiener index and Simpson index (p &lt; 0.01), and tree density was negatively correlated with the Shannon&ndash;Wiener index (p &lt; 0.05). In terms of stand spatial structure, the mingling degree was positively correlated with the Shannon&ndash;Wiener index, Simpson index, Margalef richness index and Pielou evenness index (p &lt; 0.05), while the uniform angle was negatively correlated with the Pielou evenness index (p &lt; 0.05). The correlation coefficient of the first group of typical variables in the typical correlation analysis was 0.90 (p &lt; 0.05); from this group of typical variables, it can be concluded that canopy density is the most influential indicator affecting the comprehensive index of understory herbaceous plants species diversity, with a load of &minus;0.690, and the Shannon&ndash;Wiener index and Simpson index are the most responsive indicators of changes in the comprehensive index of stand structure, with loads of 0.871 and 0.801, respectively. In the process of the management of Platycladus orientalis plantations under a low altitude, south slope, thin soil layer and hard soil parent material, in order to improve the herbaceous species diversity, the canopy density of the overstory and tree density should be appropriately reduced. Additionally, it is necessary to regulate the horizontal spatial structure of stands. When the trees are randomly distributed and the mingling degree is high, the species diversity of herbs can be increased

    Integration of ATAC-seq and RNA-seq identifies MX1-mediated AP-1 transcriptional regulation as a therapeutic target for Down syndrome

    No full text
    Abstract Background Growing evidence has suggested that Type I Interferon (I-IFN) plays a potential role in the pathogenesis of Down Syndrome (DS). This work investigates the underlying function of MX1, an effector gene of I-IFN, in DS-associated transcriptional regulation and phenotypic modulation. Methods We performed assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq) to explore the difference of chromatin accessibility between DS derived amniocytes (DSACs) and controls. We then combined the annotated differentially expressed genes (DEGs) and enriched transcriptional factors (TFs) targeting the promoter region from ATAC-seq results with the DEGs in RNA-seq, to identify key genes and pathways involved in alterations of biological processes and pathways in DS. Results Binding motif analysis showed a significant increase in chromatin accessibility of genes related to neural cell function, among others, in DSACs, which is primarily regulated by members of the activator protein-1 (AP-1) transcriptional factor family. Further studies indicated that MX Dynamin Like GTPase 1 (MX1), defined as one of the key effector genes of I-IFN, is a critical upstream regulator. Its overexpression induced expression of AP-1 TFs and mediated inflammatory response, thus leading to decreased cellular viability of DS cells. Moreover, treatment with specific AP-1 inhibitor T-5224 improved DS-associated phenotypes in DSACs. Conclusions This study demonstrates that MX1-mediated AP-1 activation is partially responsible for cellular dysfunction of DS. T-5224 effectively ameliorated DS-associated phenotypes in DSACs, suggesting it as a potential treatment option for DS patients

    Fungal and bacterial microbiome dysbiosis and imbalance of trans-kingdom network in asthma

    No full text
    Abstract Background Fungal and bacterial microbiota play an important role in development of asthma. We aim to characterize airway microbiome (mycobiome, bacteriome) and functional genes in asthmatics and controls. Methods Sputum microbiome of controls, untreated asthma patients and inhaled corticosteroid (ICS) receiving patients was detected using high throughput sequencing. Metagenomic sequencing was used to examine the functional genes of microbiome. Results 1. Mycobiome: α diversity was lower in untreated asthma group than that in controls. Mycobiome compositions differed among the three groups. Compared with controls, untreated asthma group has higher abundance of Wallemia, Mortierella and Fusarium. Compared with untreated asthma patients, ICS receiving patients has higher abundance of Fusarium and Mortierella, lower frequency of Wallemia, Alternaria and Aspergillus. 2. Bacteriome: α diversity was lower in untreated asthma group than that in controls. There are some overlaps of bacteriome compositions between controls and untreated asthma patients which were distinct from ICS receiving patients. Untreated asthma group has higher Streptococcus than controls. 3. Potential fungal and bacterial biomarkers of asthma: Trametes, Aspergillus, Streptococcus, Gemella, Neisseria, etc. 4. Correlation network: There are dense and homogenous correlations in controls but a dramatically unbalanced network in untreated asthma and ICS receiving patients, which suggested the existence of disease-specific inter-kingdom and intra-kingdom alterations. 5. Metagenomic analysis: functional pathways were associated with the status of asthma, microbiome and functional genes showed different correlations in different environment. Conclusion We showed mycobiome and bacteriome dysbiosis in asthma featured by alterations in biodiversity, community composition, inter-kingdom and intra-kingdom network. We also observed several functional genes associated with asthma
    corecore