15 research outputs found
Patient acceptability, safety and access : A balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations
© 2017 Elsevier B.V. All rights reserved.The selection and design of age-appropriate formulations intended for use in paediatric and geriatric patients are dependent on multiple factors affecting patient acceptability, safety and access. The development of an economic and effective product relies on a balanced consideration of the risks and benefits of these factors. This review provides a comprehensive and up-to-date analysis of oral dosage forms considering key aspects of formulation design including dosage considerations, ease of use, tolerability and safety, manufacturing complexity, stability, supply and cost. Patient acceptability has been examined utilising an evidence-based approach to evaluate regulatory guidance and literature. Safety considerations including excipients and potential risk of administration errors of the different dosage forms are also discussed, together with possible manufacturing and supply challenges. Age appropriate drug product design should consider and compare i) acceptability ii) safety and iii) access, although it is important to recognise that these factors must be balanced against each other, and in some situations a compromise may need to be reached when selecting an age-appropriate formulation.Peer reviewedFinal Accepted Versio
Patient-centred pharmaceutical design to improve acceptability of medicines : similarities and differences in paediatric and geriatric populations
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Patient acceptability of a medicinal product is a key aspect in the development and prescribing of medicines. Children and older adults differ in many aspects from the other age subsets of population and require particular considerations in medication acceptability. This review highlights the similarities and differences in these two age groups in relation to factors affecting acceptability of medicines. New and conventional formulations of medicines are considered regarding their appropriateness for use in children and older people. Aspects of a formulation that impact acceptability in these patient groups are discussed, including, for example, taste/smell/viscosity of a liquid and size/shape of a tablet. A better understanding of the acceptability of existing formulations highlights opportunities for the development of new and more acceptable medicines and facilitates safe and effective prescribing for the young and older populationsPeer reviewedFinal Published versio
Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for Low-Resource Settings
Primaquine is an important antimalarial drug for malaria transmission blocking and radical cure, but it is not currently available in child-friendly formulations in appropriate doses. Adult-strength tablets are often crushed and dissolved in water to obtain the required dose, which exposes the drug’s bitter taste. As part of the developing paediatric primaquine (DPP) project, this study adopted a responsive sensory pharmaceutics approach by integrating real-time formulation development and pre-clinical taste assessment to develop palatable, flavour-infused primaquine tablets. A design of experiment (DoE) approach was used to screen different taste-masking agents and excipient blends with trained, expert sensory assessors, with quinine hydrochloride as a model bitter tastant. The taste-masking efficacy of selected prototype formulation blends was validated with naïve assessors using the highest 15 mg primaquine dose. The mean bitterness intensity rating, measured on a discrete 11-point scale, was halved from 7.04 for the unflavoured control to 2.74–3.70 for the formulation blends. Sucralose had the biggest impact on bitterness suppression and improving palatability. Two different flavouring systems have been developed, and their acceptability in paediatric patients will be assessed as part of upcoming validation field clinical trials in Africa
Methodologies for Assessing the Acceptability of Oral Formulations among children and older adults: A Systematic Review
This is an open access article distributed under the terms and conditions of the Creative Commons Attribution NonCommercial-NoDerivatives 4.0 International CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Acceptability of medicinal products in children and older populations is pivotal in ensuring adherence and therapeutic outcomes. This review systematically identifies studies reporting on formulation aspects of oral medications that affect their acceptability in these patient groups. Particular emphasis is placed on the evaluation of the methodologies employed in the studies. Sixty-eight studies were included for analysis, with 51 (75%) in children and 17 (25%) in older populations. The studies evaluated a range of oral formulations; however, the methodologies used differ considerably in participants’ characteristics, study settings, tools, acceptability definitions and criteria. It is evident that there is a lack of standardisation in study design as well as the assessment methods used in assessing acceptability of medicines in children and older populations. This review presents a systematic analysis on methods employed for assessing acceptability of oral medicines in children and older adults, to provide insights and recommendations regarding the design of reliable instruments in future studies.Peer reviewe
Oral formulations for paediatrics: palatability studies
The palatability of paediatric medicines is one of the most important formulation factors with potential to influence adherence to therapeutic regimens and outcomes.1 Palatability has been defined as, “the overall appreciation of a (often oral) medicine by organoleptic properties such as vision (appearance), smell, taste, aftertaste and mouth feel (for example, texture, cooling, heating, trigeminal response) and possibly also sound (auditory clues)”.2 Although this paper focuses on palatability of oral formulations, it may also be an important aspect to consider for products designed for inhaled or nasal administration. The importance and incentive to study the palatability of paediatric formulations was discussed in the reflection paper3 and endorsed in the latest European paediatric guideline on pharmaceutical development of formulations for paediatric use.
I Spy with My Little Eye: A Paediatric Visual Preferences Survey of 3D Printed Tablets
3D printing (3DP) in the pharmaceutical field is a disruptive technology that allows the preparation of personalised medicines at the point of dispensing. The paediatric population presents a variety of pharmaceutical formulation challenges such as dose flexibility, patient compliance, taste masking and the fear or difficulty to swallow tablets, all factors that could be overcome using the adaptable nature of 3DP. User acceptability studies of 3D printed formulations have been previously carried out in adults; however, feedback from children themselves is essential in establishing the quality target product profile towards the development of age-appropriate medicines. The aim of this study was to investigate the preference of children for different 3D printed tablets (Printlets™) as an important precursor to patient acceptability studies. Four different 3DP technologies; digital light processing (DLP), selective laser sintering (SLS), semi-solid extrusion (SSE) and fused deposition modeling (FDM) were used to prepare placebo printlets with similar physical attributes including size and shape. A single-site, two-part survey was completed with participants aged 4–11 years to determine their preference and opinions based on visual inspection of the printlets. A total of 368 participants completed an individual open questionnaire to visually select the best and worst printlet, and 310 participants completed further non-compulsory open questions to elaborate on their choices. Overall, the DLP printlets were the most visually appealing to the children (61.7%) followed by the SLS printlets (21.2%), and with both the FDM (5.4%) and SSE (11.7%) printlets receiving the lowest scores. However, after being informed that the SSE printlets were chewable, the majority of participants changed their selection and favoured this printlet, despite their original choice, in line with children’s preference towards chewable dosage forms. Participant age and sex displayed no significant differences in printlet selection. Printlet descriptions were grouped into four distinct categories; appearance, perceived taste, texture and familiarity, and were found to be equally important when creating a quality target product profile for paediatric 3D printed formulations. This study is the first to investigate children’s perceptions of printlets, and the findings aim to provide guidance for further development of paediatric-appropriate medicines using different 3DP technologies
Retinoblastoma Tumor Suppressor Targets dNTP Metabolism to Regulate DNA Replication
The retinoblastoma tumor suppressor, RB, is a negative regulator of the cell cycle that is inactivated in the majority of human tumors. Cell cycle inhibition elicited by RB has been attributed to the attenuation of CDK2 activity. Although ectopic cyclins partially overcome RB-mediated S-phase arrest at the replication fork, DNA replication remains inhibited and cells fail to progress to G(2) phase. These data suggest that RB regulates an additional execution point in S phase. We observed that constitutively active RB attenuates the expression of specific dNTP synthetic enzymes: dihydrofolate reductase, ribonucleotide reductase (RNR) subunits R1/R2, and thymidylate synthase (TS). Activation of endogenous RB and related proteins by p16ink4a yielded similar effects on enzyme expression. Conversely, targeted disruption of RB resulted in increased metabolic protein levels (dihydrofolate reductase, TS, RNR-R2) and conferred resistance to the effect of TS or RNR inhibitors that diminish available dNTPs. Analysis of dNTP pools during RB-mediated cell cycle arrest revealed significant depletion, concurrent with the loss of TS and RNR protein. Importantly, the effect of active RB on cell cycle position and available dNTPs was comparable to that observed with specific antimetabolites. Together, these results show that RB-mediated transcriptional repression attenuates available dNTP pools to control S-phase progression. Thus, RB employs both canonical cyclin-dependent kinase/cyclin regulation and metabolic regulation as a means to limit proliferation, underscoring its potency in tumor suppression
Retinoblastoma Tumor Suppressor Targets dNTP Metabolism to Regulate DNA Replication
The retinoblastoma tumor suppressor, RB, is a negative regulator of the cell cycle that is inactivated in the majority of human tumors. Cell cycle inhibition elicited by RB has been attributed to the attenuation of CDK2 activity. Although ectopic cyclins partially overcome RB-mediated S-phase arrest at the replication fork, DNA replication remains inhibited and cells fail to progress to G(2) phase. These data suggest that RB regulates an additional execution point in S phase. We observed that constitutively active RB attenuates the expression of specific dNTP synthetic enzymes: dihydrofolate reductase, ribonucleotide reductase (RNR) subunits R1/R2, and thymidylate synthase (TS). Activation of endogenous RB and related proteins by p16ink4a yielded similar effects on enzyme expression. Conversely, targeted disruption of RB resulted in increased metabolic protein levels (dihydrofolate reductase, TS, RNR-R2) and conferred resistance to the effect of TS or RNR inhibitors that diminish available dNTPs. Analysis of dNTP pools during RB-mediated cell cycle arrest revealed significant depletion, concurrent with the loss of TS and RNR protein. Importantly, the effect of active RB on cell cycle position and available dNTPs was comparable to that observed with specific antimetabolites. Together, these results show that RB-mediated transcriptional repression attenuates available dNTP pools to control S-phase progression. Thus, RB employs both canonical cyclin-dependent kinase/cyclin regulation and metabolic regulation as a means to limit proliferation, underscoring its potency in tumor suppression