522 research outputs found

    Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle

    Get PDF
    Traditionally, anti-platelet autoantibodies accelerating platelet clearance from the peripheral circulation have been recognized as the primary pathopysiological mechanism in chronic immune thrombocytopenia (ITP). Recently, increasing evidence supports the co-existence of insufficient megakaryopoiesis. Inadequate low thrombopoietin (TPO) levels are associated with insufficient proliferation and differentiation of megakaryocytes, decreased proplatelet formation, and subsequent platelet release. Recently two novel activators of TPO receptors have been made available: romiplostim and eltrombopag. In several phase III studies, both agents demonstrated increase of platelet counts in about 80% of chronic ITP patients within 2 to 3 weeks. These agents substantially broaden the therapeutic options for patients with chronic ITP although long-term results are still pending. This review will provide an update on the current conception of underlying mechanisms in ITP and novel, pathophysiologically based treatment options

    Fast and cost effective fabrication of microlens arrays for enhancing light out-coupling of organic light-emitting diodes

    Get PDF
    The efficiency of organic light-emitting diodes (OLEDs) deposited on flat substrates is strongly limited by the total internal reflection at the air-substrate interface. An effective strategy to reduce the amount of substrate modes and enhance the light out-coupling into the air is attaching a microlens array (MLA) on the external surface of OLEDs. In this study, polymeric MLA with periods between 1.2 µm and 2.0 µm are patterned by plate-to-plate nano-imprint lithography using metallic stamps structured by direct laser interference patterning. When MLA with a spatial period of 2.0 µm and a structure depth of 200 nm are employed on red, green and blue OLEDs, the external quantum efficiency is increased to 11.4%, 6.6% and 12.7%, respectively, due to a reduction of internally reflected radiation at the air-MLA-glass interfaces.Fil: Stellmacher, Andre. Technische Universität Dresden; AlemaniaFil: Liu, Yuan. Technische Universität Dresden; AlemaniaFil: Soldera, Marcos Maximiliano. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rank, Andreas. Technische Universität Dresden; AlemaniaFil: Reineke, Sebastian. Technische Universität Dresden; AlemaniaFil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemani

    Circulating lymphocytes reflect the local immune response in patients with colorectal carcinoma

    Get PDF
    Tumor-infiltrating lymphocytes (TILs) correlate with the number and size of the surrounding lymph nodes in patients with colorectal carcinoma (CRC) and reflect the quality of the antitumor immune response. In this prospective study, we analyzed whether this response correlated with the circulating lymphocytes in peripheral blood (PB). In 47 patients with newly diagnosed CRC, flow cytometry was performed to analyze the B cells, T cells, NK cells, and a variety of their subsets in PB. The results were correlated with TILs in the resected tumor and with the number and size of the surrounding lymph nodes in nodal negative (N- patients (LN5: number of lymph nodes measuring ≥5 mm) and the metastasis-to-lymph node size ratio (MSR) in nodal positive patients (N+). Differences between the number of TILs could be seen between N+ and N- patients, dependent on the LN5 and MSR categories, with higher values in N- cases and in patients with a higher LN5 category or a lower MSR. Additionally, higher values of various circulating lymphocyte subgroups were observed in these patients. For the total PB lymphocytes, CD8 cells, and some of their subgroups, a positive correlation with the TILs was found. This study shows that circulating lymphocytes—in particular, cytotoxic T cells—correlate with the local antitumor immune response displayed by TILs and lymph node activation. Our findings indicate that local and generalized antitumor immune responses are concordant with their different components

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Alterations of peripheral blood T cell subsets following donor lymphocyte infusion in patients after allogeneic stem cell transplantation

    Get PDF
    Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) is an established method to enhance the Graft-versus-Leukemia (GvL) effect. However, alterations of cellular subsets in the peripheral blood of DLI recipients have not been studied. We investigated the changes in lymphocyte subpopulations in 16 patients receiving DLI after successful alloSCT. Up to three DLIs were applied in escalating doses, prophylactically for relapse prevention in high-risk disease (n = 5), preemptively for mixed chimerism and/or a molecular relapse/persistence (n = 8), or as part of treatment for hematological relapse (n = 3). We used immunophenotyping to measure the absolute numbers of CD4+, CD8+, NK, and CD56+ T cells and their respective subsets in patients’ peripheral blood one day before DLI (d-1) and compared the results at day + 1 and + 7 post DLI to the values before DLI. After the administration of 1 × 106 CD3+ cells/kg body weight, we observed an overall increase in the CD8+ and CD56+ T cell counts. We determined significant changes between day − 1 compared to day + 1 and day + 7 in memory and activated CD8+ subsets and CD56+ T cells. Applying a higher dose of DLI (5 × 106 CD3+ cells/kg) led to a significant increase in the overall counts and subsets of CD8+, CD4+, and NK cells. In conclusion, serial immune phenotyping in the peripheral blood of DLI recipients revealed significant changes in immune effector cells, in particular for various CD8+ T cell subtypes, indicating proliferation and differentiation

    Human bone marrow contains high levels of extracellular vesicles with a tissue-specific subtype distribution

    Get PDF
    Introduction Extracellular vesicles (EV) are shed from a broad variety of cells and play an important role in activation of coagulation, cell to cell interaction and transport of membrane components. They are usually measured as circulating EV in peripheral blood (PB) and other body fluids. However, little is known about the distribution, presence and impact of EV and their sub-populations in bone marrow (BM). In our study, we focused on the analysis of different EV subtypes in human BM as compared to EV subsets in PB. Methods EV in BM and PB from 12 healthy stem cell donors were measured by flow-cytometry using Annexin V and cell-specific antibodies for hematopoietic stem cells, leucocytes, platelets, red blood cells, and endothelial cells. Additionally, concentrations of tissue factor-bearing EV were evaluated. Results High numbers of total EV were present in BM (median value [25-75 percentile]: 14.8 x10(9)/l [8.5-19.3]). Non-significantly lower numbers of total EV were measured in PB (9.2 x10(9)/l [3.8-14.5]). However, distribuation of EV subtypes showed substantial differences between BM and PB: In PB, distribution of EV fractions was similar as previously described. Most EV originated from platelets (93.9%), and only few EV were derived from leucocytes (4.5%), erythrocytes (1.8%), endothelial cells (1.0%), and hematopoietic stem cells (0.7%). In contrast, major fractions of BM-EV were derived from red blood cells or erythropoietic cells (43.2%), followed by megacaryocytes I platelets (27.6%), and by leucocytes as well as their progenitor cells (25,7%);only low EV proportions originated from endothelial cells and hematopoietic stem cells (2.0% and 1.5%, respectively). Similar fractions of tissue factor- bearing EV were found in BM and PB (1.3% and 0.9%). Conculsion Taken together, we describe EV numbers and their subtype distribution in the BM compartment for the first time. The tissue specific EV distribution reflects BM cell composition and favours the idea of a BM-PB barrier existing not only for cells, but also for EV

    Conditioning of hiPSC-derived cardiomyocytes using surface topography obtained with high throughput technology

    Get PDF
    Surface functionalization of polymers aims to introduce novel properties that favor bioactive responses. We have investigated the possibility of surface functionalization of polyethylene terephthalate (PET) sheets by the combination of laser ablation with hot embossing and the application of such techniques in the field of stem cell research. We investigated the response of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to topography in the low micrometer range. HiPSC-CMs are expected to offer new therapeutic tools for myocardial replacement or regeneration after an infarct or other causes of cardiac tissue loss. However, hiPSC-CMs are phenotypically immature compared to myocytes in the adult myocardium, hampering their clinical application. We aimed to develop and test a high-throughput technique for surface structuring that would improve hiPSC-CMs structural maturation. We used laser ablation with a ps-laser source in combination with nanoimprint lithography to fabricate large areas of homogeneous micron- to submicron line-like pattern with a spatial period of 3 µm on the PET surface. We evaluated cell morphology, alignment, sarcomeric myofibrils assembly, and calcium transients to evaluate phenotypic changes associated with culturing hiPSC-CMs on functionalized PET. Surface functionalization through hot embossing was able to generate, at low cost, low micrometer features on the PET surface that influenced the hiPSC-CMs phenotype, suggesting improved structural and functional maturation. This technique may be relevant for high-throughput technologies that require conditioning of hiPSC-CMs and may be useful for the production of these cells for drug screening and disease modeling applications with lower costs.Fil: Cortella, Lucas R. X.. Universidade de Sao Paulo; BrasilFil: Cestari, Idágene A.. Universidade de Sao Paulo; BrasilFil: Lahuerta, Ricardo D.. Universidade de Sao Paulo; BrasilFil: Arana, Matheus C.. Universidade de Sao Paulo; BrasilFil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rank, Andreas. Technische Universität Dresden; AlemaniaFil: Lasagni, Andrés F.. Technische Universität Dresden; AlemaniaFil: Cestari, Ismar N.. Universidade de Sao Paulo; Brasi
    corecore