26 research outputs found
Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida)
Despite their phylogenetic diversity, parasitic nematodes share attributes of longevity and developmental arrest (=hypobiosis) with free-living nematodes at key points in their life cycles, particularly in larval stages responsible for establishing infection in the host. Insulin-like signalling plays crucial roles in the regulation of life span and arrest (=dauer formation) in the free-living nematode, Caenorhabditis elegans. Insulin-like signalling in C. elegans negatively regulates the fork head boxO (FoxO) transcription factor encoded by daf-16, which is linked to initiating a dauer-specific pattern of gene expression. Orthologues of daf-16 have been identified in several species of parasitic nematode. Although function has been demonstrated for an orthologue from the parasitic nematode Strongyloides stercoralis (Rhabditida), the functional capabilities of homologues/orthologues in bursate nematodes (Strongylida) are unknown. In the present study, we used a genomic approach to determine the structures of two complete daf-16 orthologues (designated Hc-daf-16.1 and Hc-daf-16.2) and their transcripts in the parasitic nematode Haemonchus contortus, and assessed their function(s) using C. elegans as a genetic surrogate. Unlike the multiple isoforms of Ce-DAF-16 and Ss-DAF-16, which are encoded by a single gene and produced by alternative splicing, mRNAs encoding the proteins Hc-DAF-16.1 and Hc-DAF-16.2 are transcribed from separate and distinct loci. Both orthologues are transcribed in all developmental stages and both sexes of H. contortus, and the inferred proteins (603 and 556 amino acids) each contain a characteristic, highly conserved fork head domain. In spite of distinct differences in genomic organisation compared with orthologues in C. elegans and S. stercoralis, genetic complementation studies demonstrated here that Hc-daf-16.2, but not Hc-daf-16.1, could restore daf-16 function to a C. elegans strain carrying a null mutation at this locus. These findings are consistent with previous results for S. stercoralis and demonstrate functional conservation of the daf-16b orthologue between key parasitic nematodes from two different taxonomic orders and C. elegans. We conclude from these experiments that the fork head transcription factor DAF-16 and, by inference, other insulin-like signalling elements, are conserved in H. contortus, a parasitic nematode of paramount economic importance. We demonstrate that functionality is sufficiently conserved in Hc-DAF-16.2 that it can replace Ce-DAF-16 in promoting dauer arrest in C. elegans
Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasite Load and Blood Loss after Hookworm Infection in Dogs
BACKGROUND: Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1. METHODS AND FINDINGS: We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056) and fecal egg counts (p = 0.018) in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049) and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood. CONCLUSION: To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine
Characterisation of proteases involved in proteolytic degradation of haemoglobin in the human hookworm Necator americanus
With over a billion people infected world wide, hookworms are considered as important human pathogens, particularly in developing countries which have the highest rates of infections. Hookworms reside in the gastrointestinal tract of the host where they continuously feed on blood, leading to conditions such as chronic irondeficiency anaemia. The majority of blood-feeding parasites rely on proteins found in blood to provide many of their nutritional requirements for growth, reproduction and survival. Of the numerous proteins found in blood, haemoglobin (Hb) is one of the most abundant. In order to acquire amino acids for protein synthesis, it is thought that haematophagous parasites degrade Hb using various classes of endo- and exoproteases, in a manner similar to that which occurs in catabolism of proteins in mammalian cellular lysosomes. This study identified and characterised proteases involved in the Hb degradation process in the human hookworm, Necator americanus, in order to identify potential candidate antigens for a vaccine that interrupts blood-feeding. Red blood cells ingested by hookworms are lysed to release Hb, which is cleaved by various proteases into dipeptides or free amino acids and these are taken up through the gut membrane by amino acid transporters. Proteases expressed in the intestinal tract of hookworms are thought to play a major role in this process and would therefore make good targets for vaccine candidates aimed at interrupting blood-feeding. To identify these proteases, adult hookworms (both N. americanus and Ancylostoma caninum) were sectioned and intestinal tissue was dissected via laser microdissection microscopy. RNA extracted from the dissected tissue was used to generate gut-specific cDNA, which then was used to create plasmid libraries. Each library was subjected to shotgun sequencing, and of the 480 expressed sequence tags (ESTs) sequenced from each species, 268 and 276 contigs were assembled from the N. americanus and A. caninum libraries, respectively. Nine percent of N. americanus and 6.5% of A. caninum contigs were considered novel as no homologues were identified in any published/accessible database. The gene ontology (GO) classification system was used to categorise the contigs to predicted biological functions. Only 17% and 38% of N. americanus and A. caninum contigs, respectively, were assigned GO categories, while the rest were classified as being of unknown function. The most highly represented GO categories were molecular functions such as protein binding and catalytic activity. The most abundant transcripts encoded fatty acid binding proteins, C-type lectins and activation associated secreted proteins, indicative of the diversity of functions that occur in this complex organ. Of particular interest to this study were the contigs that encoded for cysteine and metalloproteases, expanding the list of potential N. americanus haemoglobinases. In the N. americanus cDNA library, four contigs encoding for cathepsin B cysteine proteases were identified. Three contigs from the A. caninum and one contig from the N. americanus cDNA libraries encoded for metalloproteases, including astacin-like and O-sialoglycoprotein endopeptidases, neither of which had previously been reported from adult hookworms. Apart from haemoglobinases, other mRNAs encoding potential vaccine candidate molecules were identified, including anti-clotting factors, defensins and membrane proteins. This study confirmed that the gut of hookworms encodes a diverse range of proteases, some of which are likely to be involved in Hb digestion and have the potential to be hidden (cryptic) vaccine antigens. Four cysteine proteases (Na-CP-2, -3, -4 and -5) were identified from the gut cDNA library of N. americanus. All four proteases belong to the clan CA, family C1, share homology with human cathepsin B and possess a modified occluding loop. Real-time PCR indicated that all transcripts were up-regulated in the adult stage of the hookworm parasite with high levels of mRNA expression detected in gut cDNA. All four proteases were expressed in recombinant form, but only Na-CP-3 was successfully expressed in soluble form in the yeast Pichia pastoris. Proteolytic activity for Na-CP-3 was detected on a gelatin zymogen gel, however no catalytic activity was detected against the class-specific fluorogenic peptides Z-Phe-Arg-AMC and Z-Arg-Arg-AMC. Mass spectrometry analysis of the purified protein suggested that the pro-region had not been processed in trans when the protein was secreted by yeast. Incubation of Na-CP-3 in salt buffers containing dextran sulfate resulted in autoprocessing of the pro-region as detected by Western blot and catalytic activity was detected against Z-Phe-Arg-AMC. Activated Na-CP-3 did not digest intact tetrameric human Hb. The other three cysteine proteases (Na-CP-2, -4, and -5) were expressed in insoluble form in Escherichia coli. Antibodies to all four proteins (Na- CP-2 to 5) immunolocalised to the gut region of the adult worm, supporting mRNA amplification results and strongly indicated that they might play a role in nutrient acquisition. Hb digestion in blood feeding parasites such as schistosomes and Plasmodium spp. occurs via a semi-ordered cascade of proteolysis involving numerous enzymes. In Plasmodium falciparum, at least three distinct mechanistic classes of endopeptidases have been implicated in this process, and at least two classes have been implicated in schistosomes. A similar process is thought to occur in hookworms. An aspartic protease, Na-APR-1, was expressed in P. pastoris and purified protein was shown to cleave the class-specific fluorogenic peptide 7- Methoxycoumarin-4-Acetyl-GKPILFFRLK(DNP)-D-Arg-Amide. Recombinant Na- APR-1 was able to cleave intact human Hb and completely degrade the 16 kDa monomer and 32 kDa dimer within one hour. Recombinant Na-CP-3 was not able to cleave intact Hb, but was able to further digest globin fragments that had previously been digested with Na-APR-1. A clan MA metalloprotease, Na-MEP-1, was identified in gut tissue of N. americanus and was expressed in recombinant form in Hi5 insect cells using the baculovirus expression system. Recombinant Na-MEP-1 displayed proteolytic activity when assessed by gelatin zymography, but was incapable of cleaving intact Hb. However, Na-MEP-1 did cleave globin fragments which had previously been incubated with Na-APR-1 and Na-CP-3. Hb digested with all three proteases was subjected to reverse phase HPLC and peptides were analysed using Liquid Chromatography-Mass Spectrometry (LC-MS). A total of 74 cleavage sites were identified within Hb ƒ¿ and ƒÀ chains. Na-APR-1 was responsible for cleavage of Hb at the hinge region, probably unravelling the molecule so that Na- CP-3 and Na-MEP-1 could gain access to globin peptides. All three proteases were promiscuous in their subsite specificities, but the most common P1-P1�Œ residues were hydrophobic and/or bulky in nature, such as Phe, Leu and Ala. Antibodies to all three proteins (Na-APR-1, -CP-3, -MEP-1) immunolocalised to the gut region of the worm, further supporting their roles in Hb degradation. These results suggest that Hb degradation in N. americanus follows a similar pattern to that which has been described in Plasomdium falciparum. Studies conducted in this project have identified a number of potential haemoglobinases and have demonstrated that the gut region of the hookworm contains a multitude of proteases which could be targeted for production of new chemotherapies or as vaccine candidates. Results presented here also suggest that the Hb degradation process occurs in an ordered cascade, similar to those which have been reported in other haematophagous parasites. More importantly, it has been confirmed that Na-APR-1 plays a crucial role in the initiation of the Hb degradation process and therefore targeting this molecule as a vaccine candidate could provide high levels of protection against hookworm infection
Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites
Proteases are pivotal to parasitism, mediating biological processes crucial to worm survival including larval migration through tissue, immune evasion/modulation and nutrient acquisition by the adult parasite. In haematophagous parasites, many of these proteolytic enzymes are secreted from the intestine (nematodes) or gastrodermis (trematodes) where they act to degrade host haemoglobin and serum proteins as part of the feeding process. These proteases are exposed to components of the immune system of the host when the worms ingest blood, and therefore present targets for the development of anti-helminth vaccines. The protective effects of current vaccine antigens against nematodes that infect humans (hookworm) and livestock (barber's pole worm) are based on haemoglobin-degrading intestinal proteases and act largely as a result of the neutralisation of these proteases by antibodies that are ingested with the blood-meal. In this review, we survey the current status of helminth proteases that show promise as vaccines and describe their vital contribution to a parasitic existence
Hookworm MEP-1 metalloproteases
[Extract] The human and dog hookworms, Necator americanus and Ancylostoma caninum, parasitize their respective hosts by penetrating the skin as juvenile larvae to eventually reside as adult worms in the small intestine. These blood-feeding parasites attach to the host gut wall and acquire their nutrients from the ingestion and subsequent digestion of host hemoglobin (Hb) and other blood proteins, facilitating these processes through the localized action of an array of digestive proteases [1]
A Survey of The Intestinal Transcriptomes of The Hookworms, Necator Americanus And Ancylostoma Caninum, Using Tissues Isolated by Laser Microdissection Microscopy
The gastrointestinal tracts of multi-cellular blood-feeding parasites are targets for vaccines and drugs. Recently, recombinant vaccines that interrupt the digestion of blood in the hookworm gut have shown efficacy, so we explored the intestinal transcriptomes of the human and canine hookworms, Necator americanus and Ancylostoma caninum, respectively. We used Laser Microdissection Microscopy to dissect gut tissue from the parasites, extracted the RNA and generated cDNA libraries. A total of 480 expressed sequence tags were sequenced from each library and assembled into contigs, accounting for 268 N. americanus genes and 276 A. caninum genes. Only 17% of N. americanus and 36% of A. caninum contigs were assigned Gene Ontology classifications. Twenty-six (9.8%) N. americanus and 18 (6.5%) A. caninum contigs did not have homologues in any databases including dbEST—of these novel clones, seven N. americanus and three A. caninum contigs had Open Reading Frames with predicted secretory signal peptides. The most abundant transcripts corresponded to mRNAs encoding cholesterol—and fatty acid-binding proteins, C-type lectins, Activation-Associated Secretory Proteins, and proteases of different mechanistic classes, particularly astacin-like metallopeptidases. Expressed sequence tags corresponding to known and potential recombinant vaccines were identified and these included homologues of proteases, anti-clotting factors, defensins and integral membrane proteins involved in cell adhesion
A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus
mRNAs encoding cathepsin B-like cysteine proteases (CatBs) are abundantly expressed in the genomes of blood-feeding nematodes. Recombinant CatBs have been partially efficacious in vaccine trials in animal models of hookworm infection, supporting further investigation of these enzymes as new control tools. We recently described a family of four distinct CatBs (Na-CP-2, -3, -4, -5) from the human hookworm, Necator americanus. Here we show that these N. americanus CatBs form a robust clade with other hookworm CatBs and are most similar to intestinal CatBs from Haemonchus contortus. All four mRNAs (Na-cp-2, -3, -4 and -5) are up-regulated during the transition from a free-living larva to a blood-feeding adult worm and are also expressed in gut tissue of adult N. americanus that was dissected using laser microdissection microscopy. Recombinant Na-CP-3 was expressed in soluble, secreted form in the yeast Pichia pastoris, while Na-CP-2, -4 and -5 were expressed in insoluble inclusion bodies in Escherichia coli. Recombinant Na-CP-3 was not catalytically active when secreted by yeast but underwent auto-activation to an active enzyme at low pH in the presence of dextran sulphate. Activated Na-CP-3 digested gelatin and cleaved the fluorogenic substrate Z-Phe-Arg-aminomethylcoumarin (AMC) but not Z-Arg-Arg-AMC. Recombinant Na-CP-3 did not digest intact hemoglobin but digested globin fragments generated by prior hydrolysis with N. americanus aspartic hemoglobinases. Antibodies raised in mice to all four recombinant proteins showed minimal cross-reactivity with each other, and each antiserum bound to the intestine of adult N. americanus, supporting the intestinal expression of their mRNAs. These data show that N. americanus expresses a family of intestinal CatBs, many of which are likely to be involved in nutrient acquisition and therefore are potential targets for chemotherapies and vaccines
Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus
*This article is free to read on the publisher's website* Blood-feeding parasites use mechanistically distinct proteases to digest hemoglobin (Hb), often as multienzyme cooperative cascades. We investigated the roles played by 3 distinct proteases from adults of the human hookworm Necator americanus. The aspartic protease Na-APR-1 and the cysteine protease Na-CP-3 were expressed in catalytically active form in yeast, and the metalloprotease Na-MEP-1 was expressed in catalytically active form in baculovirus. Antibodies to all 3 proteases were used to immunolocalize each native enzyme to the intestine of adult N. americanus. Recombinant Na-APR-1 cleaved intact human Hb. In contrast, Na-CP-3 and Na-MEP-1 could not cleave Hb but instead cleaved globin fragments that had been hydrolyzed by Na-APR-1, implying an ordered process of hemoglobinolysis. Seventy-four cleavage sites within Hb α- and β-chains were characterized after digestion with all 3 proteases. All of the proteases demonstrated promiscuous subsite specificities within Hb; noteworthy preferences included aromatic and hydrophobic P1 residues and hydrophobic P1′ residues for Na-APR-1 and hydrophobic P1 residues for Na-MEP-1. We conclude that Hb digestion in N. americanus involves a network of distinct proteases, some of which act in an ordered fashion, providing a potential mechanism by which some of these hemoglobinases exert their efficacy as recombinant vaccines against hookworm infectio
Vaccination with recombinant aspartic hemoglobinase reduces parasitic load and blood loss after hookworm infection in dogs
Background
Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1. Methods and Findings
We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056) and fecal egg counts (p = 0.018) in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049) and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite\u27s ability to digest blood. Conclusion
To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine