36 research outputs found

    The hard X-ray perspective on the soft X-ray excess

    Get PDF
    The X-ray spectra of many active galactic nuclei (AGN) exhibit a `soft excess' below 1keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionised reflection of X-rays from the inner part of the accretion disc, ionised winds/absorbers, and Comptonisation. The ionised reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models, but upcoming joint XMM-NuSTAR programmes provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM+NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest "observer's model" of a black body and neutral reflection to characterise the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.Comment: 12 pages, 11 figures, accepted for publication in ApJ. Added reference

    SUPERSHARP - Segmented Unfolding Primary for Exoplanet Research via Spectroscopic High Angular Resolution Photography

    Get PDF
    We propose to search for biosignatures in the spectra of reflected light from about 100 Earth-sized planets that are already known to be orbiting in their habitable zones (HZ). For a sample of G and K type hosts, most of these planets will be between 25 and 50 milli-arcsec (mas) from their host star and 1 billion to 10 billion times fainter. To separate the planet's image from that of its host star at the wavelength (763nm) of the oxygen biosignature we need a telescope with an aperture of 16 metres. Furthermore, the intensity of the light from the host star at the position in the image of the exoplanet must be suppressed otherwise the exoplanet will be lost in the glare. This presents huge technical challenges. The Earth's atmosphere is turbulent which makes it impossible to achieve the required contrast from the ground at 763nm. The telescope therefore needs to be in space and to fit the telescope in the rocket fairing it must be a factor of 4 or more times smaller when folded than when operational. To obtain spectroscopy of the planet's biosignature at 763nm we need to use an integral field spectrometer (IFS) with a field of view (FOV) of 1000 x 1000 milli-arcsec (mas) and a spectral resolution of 100. This is a device that simultaneously takes many pictures of the exoplanet each at a slightly different wavelength which are then recorded as a data cube with two spatial dimensions and one wavelength dimension. In every data cube wavelength slice, the background light from the host star at the location of the planet image must be minimised. This is achieved via a coronagraph which blocks the light from the host star and active/adaptive optics techniques which continuously maintain very high accuracy optical alignment to make the images as sharp as possible. These are the technical challenges to be addressed in a design study.Comment: A proposal in response to the ESA New Science Ideas call. Sept 2016. 25 page

    DDoS defense by offense

    Get PDF
    This article presents the design, implementation, analysis, and experimental evaluation of speak-up, a defense against application-level distributed denial-of-service (DDoS), in which attackers cripple a server by sending legitimate-looking requests that consume computational resources (e.g., CPU cycles, disk). With speak-up, a victimized server encourages all clients, resources permitting, to automatically send higher volumes of traffic. We suppose that attackers are already using most of their upload bandwidth so cannot react to the encouragement. Good clients, however, have spare upload bandwidth so can react to the encouragement with drastically higher volumes of traffic. The intended outcome of this traffic inflation is that the good clients crowd out the bad ones, thereby capturing a much larger fraction of the server's resources than before. We experiment under various conditions and find that speak-up causes the server to spend resources on a group of clients in rough proportion to their aggregate upload bandwidths, which is the intended result.National Science Foundation (U.S.) (NSF grant CNS-0225660)National Science Foundation (U.S.) (NSF grant CNS-0520241)United States. Dept. of Defense (National Security Science and Engineering Faculty Fellowship

    The response of relativistic outflowing gas to the inner accretion disk of a black hole

    Get PDF
    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.M.L.P., C.P., A.C.F. and A.L. acknowledge support from the European Research Council through Advanced Grant on Feedback 340492. W.N.A. and G.M. acknowledge support from the European Union Seventh Framework Programme (FP7/2013-2017) under grant agreement number 312789, StrongGravity. D.J.K.B. acknowledges support from the Science and Technology Facilities Council. This work is based on observations with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. D.R.W. is supported by NASA through Einstein Postdoctoral Fellowship grant number PF6-170160, awarded by the Chandra X-ray Center, operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center and the California Institute of Technology

    Rhinomaxillary mucormycosis masquerading as chronic osteomyelitis: A series of four rare cases with review of literature

    No full text
    In a dental hospital, patients reporting with exposed bone in the palate/maxilla with or without pus discharging sinuses are generally clinically diagnosed as osteomyelitis which can occur as a complication of odontogenic bacterial infections, traumatic injuries, herpes zoster infection, aspergillosis, mucormycosis or iatrogenic infections. We present a series of four cases, all of which were initially clinically diagnosed as osteomyelitis and later confirmed to be mucormycosis following histopathological examination. Although rare, the common form of this opportunistic fungal infection is seen in the rhinomaxillary region and in people with an underlying systemic disease like diabetes mellitus (DM). This case series of rhinomaxillary mucormycosis is being reported to increase awareness among dental surgeons to regard the occurrence of osteomyelitis in the maxilla occurring in a immunocompromised patient especially with poorly controlled DM, with suspicion of an aggressive, fulminant, fatal fungal infection so as to ensure an early diagnosis and prompt treatment thereby reducing the morbidity and mortality associated with this disease

    Calcifying epithelial odontogenic tumor, a rare presentation in children: Two case reports

    No full text
    Calcifying epithelial odontogenic tumor (CEOT) is a rare and benign odontogenic neoplasm that affects the jaws. It is certainly an atypical instance to find this tumor in children. Here, we present two case reports of CEOT presenting in mandible of a 12- and 13-year-old female child, respectively. CEOT have been reported to show features of malignant transformation also
    corecore