30 research outputs found

    A tetrapeptide class of biased analgesics from an Australian fungus targets the μ-opioid receptor

    Get PDF
    An Australian estuarine isolate ofPenicilliumsp. MST-MF667 yielded3 tetrapeptides named the bilaids with an unusual alternating LDLDchirality. Given their resemblance to known short peptide opioidagonists, we elucidated that they were weak (Kilow micromolar)μ-opioid agonists, which led to the design of bilorphin, a potent andselectiveμ-opioid receptor (MOPr) agonist (Ki1.1 nM). In sharp con-trast to all-natural product opioid peptides that efficaciously recruitβ-arrestin, bilorphin is G protein biased, weakly phosphorylatingthe MOPr and marginally recruitingβ-arrestin, with no receptorinternalization. Importantly, bilorphin exhibits a similar G proteinbias to oliceridine, a small nonpeptide with improved overdosesafety. Molecular dynamics simulations of bilorphin and thestrongly arrestin-biased endomorphin-2 with the MOPr indicatedistinct receptor interactions and receptor conformations thatcould underlie their large differences in bias. Whereas bilorphinis systemically inactive, a glycosylated analog, bilactorphin, isorally active with similar in vivo potency to morphine. Bilorphinis both a unique molecular tool that enhances understanding ofMOPr biased signaling and a promising lead in the development ofnext generation analgesics

    Intramolecular Modulation of Serine Protease Inhibitor Activity in a Marine Cyanobacterium with Antifeedant Properties

    Get PDF
    Extracts of the Floridian marine cyanobacterium Lyngbya cf. confervoides were found to deter feeding by reef fish and sea urchins (Diadema antillarum). This antifeedant activity may be a reflection of the secondary metabolite content, known to be comprised of many serine protease inhibitors. Further chemical and NMR spectroscopic investigation led us to isolate and structurally characterize a new serine protease inhibitor 1 that is formally derived from an intramolecular condensation of largamide D (2). The cyclization resulted in diminished activity, but to different extents against two serine proteases tested. This finding suggests that cyanobacteria can endogenously modulate the activity of their protease inhibitors

    Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity

    Full text link
    There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted

    Isokibdelones: Novel heterocyclic polyketides from a Kibdelosporangium sp.

    No full text
    The isokibdelones are an unprecedented family of polyketides produced by an Australian isolate of a rare actinomycete, Kibdelosporangium sp. The structures of the isokibdelones were assigned by spectroscopic analysis and chemical interconversion. A proposed biosynthesis requires a novel molecular twist that generates an unprecedented heterocyclic system and differentiates the isokibdelones from their kibdelone co-metabolites. SAR analysis on the isokibdelones further defines the anticancer pharmacophore of these novel polyketides

    Nine‐Step

    No full text

    Total Synthesis of Endolides A and B

    No full text

    Discovery and Anti-Inflammatory Activity of a Cyanobacterial Fatty Acid Targeting the Keap1/Nrf2 Pathway

    No full text
    The monounsaturated fatty acid 7(E)-9-keto-hexadec-7-enoic acid (1) and three structurally related analogues with different oxidation states and degrees of unsaturation (2–4) were discovered from a marine benthic cyanobacterial mat collected from Delta Shoal, Florida Keys. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The structure of 1 contained an α,β-unsaturated carbonyl system, a key motif required for the activation of the Keap1/Nrf2−ARE pathway that is involved in the activation of antioxidant and phase II detoxification enzymes. Compounds 1–4 were screened in ARE-luciferase reporter gene assay using stably transfected HEK293 cells, and only 1 significantly induced Nrf2 activity at 32 and 10 µM, whereas 2–4 were inactive. As there is crosstalk between inflammation and oxidative stress, subsequent biological studies were focused on 1 to investigate its anti-inflammatory potential. Compound 1 induced Nqo1, a well-known target gene of Nrf2, and suppressed iNos transcript levels, which translated into reduced levels of nitric oxide in LPS-activated mouse macrophage RAW264.7 cells, a more relevant model for inflammation. RNA sequencing was performed to capture the effects of 1 on a global level and identified additional canonical pathways and upstream regulators involved in inflammation and immune response, particularly those related to multiple sclerosis. A targeted survey of marine cyanobacterial samples from other geographic locations, including Guam, suggested the widespread occurrence of 1. Furthermore, the previous isolation of 1 from marine diatoms and green algae implied a potentially important ecological role across marine algal eukaryotes and prokaryotes. The previous isolation from sea lettuce raises the possibility of dietary intervention to attenuate inflammation and related disease progression

    C3 and 2D C3 Marfey’s methods for amino acid analysis in natural products

    No full text
    We validate the improved resolution and sensitivity of the C Marfey's method, including an ability to resolve all Ile isomers, against an array of amino acids commonly encountered in natural products and by comparison to an existing Marfey's method. We also describe an innovative 2D C Marfey's method as an analytical approach for determining the regiochemistry of enantiomeric amino acid residues in natural products. The C and 2D C Marfey's methods represent valuable tools for probing and defining the stereocomplexity of hydrolytically accessible amino acid residues in natural products
    corecore