203 research outputs found
An Unsupervised Classification Technique for Detection of Flipped Orientations in Document Images
Detection of text orientation in document images is of preliminary concern prior to processing of documents by Optical Character Reader. The text direction in document images should exist generally in a specific orientation, i.e., text direction for any automated document reading system. The flipped text orientation leads to an unambiguous result in such fully automated systems. In this paper, we focus on development of text orientation direction detection module which can be incorporated as the perquisite process in automatic reading system. Orientation direction detection of text is performed through employing directional gradient features of document image and adapts an unsupervised learning approach for detection of flipped text orientation at which the document has been originally fed into scanning device. The unsupervised learning is built on the directional gradient features of text of document based on four possible different orientations. The algorithm is experimented on document samples of printed plain English text as well as filled in pre-printed forms of Telugu script. The outcome attained by algorithm proves to be consistent and adequate with an average accuracy around 94%
Systematic search for putative new domain families in Mycoplasma gallisepticum genome
<p>Abstract</p> <p>Background</p> <p>Protein domains are the fundamental units of protein structure, function and evolution. The delineation of different domains in proteins is important for classification, understanding of structure, function and evolution. The delineation of protein domains within a polypeptide chain, namely at the genome scale, can be achieved in several ways but may remain problematic in many instances. Difficulties in identifying the domain content of a given sequence arise when the query sequence has no homologues with experimentally determined structure and searching against sequence domain databases also results in insignificant matches. Identification of domains under low sequence identity conditions and lack of structural homologues acquire a crucial importance especially at the genomic scale.</p> <p>Findings</p> <p>We have developed a new method for the identification of domains in unassigned regions through indirect connections and scaled up its application to the analysis of 434 unassigned regions in 726 protein sequences of <it>Mycoplasma gallisepticum </it>genome. We could establish 71 new domain relationships and probable 63 putative new domain families through intermediate sequences in the unassigned regions, which importantly represent an overall 10% increase in PfamA domain annotation over the direct assignment in this genome.</p> <p>Conclusions</p> <p>The systematic analysis of the unassigned regions in the <it>Mycoplasma gallisepticum </it>genome has provided some insight into the possible new domain relationships and putative new domain families. Further investigation of these predicted new domains may prove beneficial in improving the existing domain prediction algorithms.</p
Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase
This study has compared the preferential killing of three multidrug-resistant (MDR) KB cell lines, KB-C1, KB-A1 and KB-V1 by two inhibitors of glucosylceramide synthase, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP), to the killing produced by these compounds in the drug-sensitive cell line, KB-3-1. Both of the inhibitors caused much greater induction of apoptosis in each of the three MDR cell lines than in the drug-sensitive cell line, as judged by morphological assay and confirmed by poly-(ADP-ribose)-polymerase cleavage. The highest level of apoptosis was produced following 24-h exposure to 5 μM PPPP. This treatment produced 75.8 (± 7.1)%, 73.6 (± 9.8)% and 75.3 (± 6.4)% apoptotic cells in the three MDR cell lines respectively, compared to 19.0 (± 9.8)% in the drug-sensitive cell line. A reduction in glucosylceramide level following inhibitor treatment occurred in KB-3-1 cells as well as in the MDR cell lines, suggesting that the increased apoptotic response in the MDR cells reflected a different downstream response to changes in the levels of this lipid in these cells compared to that in the drug-sensitive cells. These results suggest that the manipulation of glucosylceramide levels may be a fruitful way of causing the preferential killing of MDR cells in vitro and possibly in vivo. © 1999 Cancer Research Campaig
No evidence for association between SLC11A1 and visceral leishmaniasis in India.
BACKGROUND: SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. METHODS: Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). RESULTS: No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. CONCLUSIONS: This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat
BACKGROUND: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7). CONCLUSION: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy
Helminth parasites such as the nematode Heligmosomoides polygyrus strongly inhibit T helper type 2 (Th2) allergy, as well as colitis and autoimmunity. Here, we show that the soluble excretory/secretory products of H. polygyrus (HES) potently suppress inflammation induced by allergens from the common fungus Alternaria alternata. Alternaria extract, when administered to mice intranasally with ovalbumin (OVA) protein, induces a rapid (1–48 h) innate response while also priming an OVA-specific Th2 response that can be evoked 14 days later by intranasal administration of OVA alone. In this model, HES coadministration with Alternaria/OVA suppressed early IL-33 release, innate lymphoid cell (ILC) production of IL-4, IL-5, and IL-13, and localized eosinophilia. Upon OVA challenge, type 2 ILC (ILC2)/Th2 cytokine production and eosinophilia were diminished in HES-treated mice. HES administration 6 h before Alternaria blocked the allergic response, and its suppressive activity was abolished by heat treatment. Administration of recombinant IL-33 at sensitization with Alternaria/OVA/HES abrogated HES suppression of OVA-specific responses at challenge, indicating that suppression of early Alternaria-induced IL-33 release could be central to the anti-allergic effects of HES. Thus, this helminth parasite targets IL-33 production as part of its armory of suppressive effects, forestalling the development of the type 2 immune response to infection and allergic sensitization
Developmental changes in human dopamine neurotransmission: cortical receptors and terminators
<p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p
Tools and techniques for solvent selection: green solvent selection guides
Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail
Hacking into bacterial biofilms: a new therapeutic challenge
Microbiologists have extensively worked during the past decade on a particular phase of the bacterial cell cycle known as biofilm, in which single-celled individuals gather together to form a sedentary but dynamic community within a complex structure, displaying spatial and functional heterogeneity. In response to the perception of environmental signals by sensing systems, appropriate responses are triggered, leading to biofilm formation. This process involves various molecular systems that enable bacteria to identify appropriate surfaces on which to anchor themselves, to stick to those surfaces and to each other, to construct multicellular communities several hundreds of micrometers thick, and to detach from the community. The biofilm microbial community is a unique, highly competitive, and crowded environment facilitating microevolutionary processes and horizontal gene transfer between distantly related microorganisms. It is governed by social rules, based on the production and use of "public" goods, with actors and recipients. Biofilms constitute a unique shield against external aggressions, including drug treatment and immune reactions. Biofilm-associated infections in humans have therefore generated major problems for the diagnosis and treatment of diseases. Improvements in our understanding of biofilms have led to innovative research designed to interfere with this process
- …