2,677 research outputs found

    Snowmelt-runoff Model Utilizing Remotely-sensed Data

    Get PDF
    Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation

    An overview of the applications systems verification test on snowcover mapping

    Get PDF
    The capability of the LANDSAT and NOAA satellites to accurately measure snowcovered area on various size watersheds was demonstrated. Recent research has shown a highly significant statistical relationship between satellite-derived snowcovered area at the beginning of the snowmelt period and seasonal runoff. The decision was made to test the results of several satellite snowcovered area studies in an Applications Systems Verification Test (ASVT) Program where quasi-operational evaluations of total technical capability are performed. The objective of these ASVT's is to provide all the information necessary for a potential user to make effective decisions concerning the implementation of the new remote sensing technology in an operational applications system

    Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978

    Get PDF
    Research work in the United States from 1975-1978 in the field of remote sensing of snow and ice is reviewed. Topics covered include snowcover mapping, snowmelt runoff forecasting, demonstration projects, snow water equivalent and free water content determination, glaciers, river and lake ice, and sea ice. A bibliography of 200 references is included

    Pilot Tests of Satellite Snowcover/Runoff Forecasting Systems

    Get PDF
    Major snow zones of the western U.S. were selected to test the capability of satellite systems for mapping snowcover in various snow, cloud, climatic, and vegetation regimes. Different satellite snowcover analysis methods used in each area are described along with results

    Discharge forecasts in mountain basins based on satellite snow cover mapping

    Get PDF
    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff

    Water Resources

    Get PDF
    Water resources survey, management, and control by means of ERTS-1 data - Conferenc

    Applications of remote sensing to watershed management

    Get PDF
    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community

    Application of ERTS-1 Imagery to Flood Inundation Mapping

    Get PDF
    Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow

    Extraction and utilization of space acquired physiographic data for water resources development

    Get PDF
    ERTS-1 satellite imagery was evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado, and (3) portions of the Middle Atlantic States. Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales

    Satellite microwave observations of soil moisture variations

    Get PDF
    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained
    corecore