1,008 research outputs found

    Shaft failures in coal handling plants

    Get PDF
    An analysis of premature failures in coal pulveriser mill shafts brings out the facts that the auxiliary units, in a power plant, like coal feeders, pulverizer mills etc., do not receive much attention during routine inspections and lack in property specification for the materials. It is brought out in this investigation that mere specification of material composition and hardness is not enough for load bearing components operating under cyclic loads

    CARTOSAT-1: The latest from the Indian Remote Sensing satellite series

    Get PDF
    This article does not have an abstract

    Shaft Failures in Coal Handling Plants

    Get PDF
    An analysis of premature failures in coal pulveriser mill shafts brings out the facts that the auxiliary units, in a power plant, like coal feeders, pulverizer mills elc., do not receive much attention during routine inspections and lack in property specification for the materials. It is brought out in this investigation that mere specification of material composition and hardness is not enough for load bearing components operating under cyclic loads

    The integrated optic RF spectrum analyzer

    Get PDF
    The results of measurements made on a fully integrated optic RF spectrum analyzer (IOSA) are reported. The performance of the device acousto-optic bandwidth, single-tone RF resolution, two-tone RF resolution, single-tone dynamic range, two-tone dynamic range, and single-tone RF response are presented. The device parameters that control device performance are analyzed. These results demonstrate the viability of the IOSA for real time spectrum analysis of pulsed and CW RF signals. Improvements of RF bandwidth resolution can be obtained by the use of larger collimated optical beams which requires larger optical lens elements, and hence, larger crystals

    Estimating wheat yield: an approach for estimating number of grains using cross-polarised ENVISAT-1 ASAR data

    Get PDF
    In this paper an attempt to model wheat yield is made by exploiting characteristic interaction of cross-polarised SAR with wheat crop. SAR backscatter from a crop field is affected by the density, structure, volume and the moisture content of various components of plant (viz. head, stem, leaf) alongwith soil moisture. Hence, to effectively handle the influence of each of these components of the plant on SAR backscatter, a plant parameter, termed as Interaction Factor (IF) is conceptualised by combining volume, moisture, height for each of the component and density of plant. For this purpose, detailed experiment over farmers' fields was carried out in synchrony with SAR acquisition involving in-depth measurements on volume, moisture content and height of various components of wheat plant, number of grains, plant density and soil moisture. Stepwise regression analysis revealed that IFHead significantly affects the shallow incidence angle, cross-polarised C-band SAR backscatter. IFHead is also highly correlated to the number of grains. This is attributed to the fact that parameters of the wheat head from which IFHead is calculated, namely moisture, volume and height, determine eventual number of grains. The study offers an approach for estimating wheat yield by retrieving number of grains from shallow incidence angle cross-polarised SAR data

    The evolution of the earth observation system in India

    Get PDF
    The Indian Earth Observations Programme has been applications- driven and national development has been its prime motivation. From the experimental satellite Bhaskara-I launched in 1979 to the recent Cartosat-2B launched in July 2010, India's Earth Observations capability has increased manifold. The Enhancement in observation capabilities are not only in spatial, spectral, temporal and radiometric resolutions, but also in their coverage and value-added products. The sensors built over this period provide observations over land, atmosphere and oceans in visible, infrared, thermal and microwave regions of the electro magnetic spectrum. Earth Observation data has been extensively used in inventories, monitoring and conservation plans of various natural resources of the country for societal benefits. An institutional mechanism for the absorption of technology at different levels of governance in the country has been built through the concept of the National Natural Resources Management System. The Establishment of various centres/institutions in different states, central agencies as well as academic and research institutions has helped capacity building in the area of remote sensing technology and applications programmes. The paper reviews the evolution of the Earth Observation System in the country in the last three decades and briefly discusses future directions

    Climate change studies using space based observation

    Get PDF
    Climate change is associated with earth radiation budget that depends upon incoming solar radiation, surface albedo and radiative forcing by greenhouse gases. Human activities are contributing to climate change by causing changes in Earth's atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, and global scales) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols, GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India's Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and series of Environmental satellites (I-STAG) would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO (Indian Space Research Organization) towards mapping/detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational systems to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere

    Space observation for climate change studies

    Get PDF
    Climate change is associated with earth radiation budget that depends upon in-comming solar radiation, surface albedo and radiative forcing by green house gases. Human activities are contributing to climate change by causing changes in Earth's atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, global) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols & GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India's Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and I-STAG would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO towards mapping/ detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational system to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere

    Advances in computer-aided crack length measurement during fatigue crack growth testing

    Get PDF
    The accurate measurement of crack length is one of the most important aspect of fatigue crack growth rate (FCGR) testing. Of the various methods available for crack length measurement, compliance technique is very popular due to the facilities it provides for easy automation. In the compliance technique, compliance crack length (CCL) rela-tions are used for correlating the compliance, computed from measurements of displacements & loads during fatigue cycling, to the crack length contained in the specimen. CCL relations are specific not only to the specimen geometry, but also to the location on the specimen body at which displacements are measured. This specificness is not very conducive to the experimentalist as it introduces errors in the measured crack length if the location of displacement measurement is not accurately maintained. With variations in specimen geometry and size, the accu-rate positioning of displacement measurement transducers is not an easy task. In order to provide greater flexi-bility in the use of the compliance technique, a new scheme has been proposed in this paper. Modelling the defo-rmation of a fracture mechanics specimen during fatigue cycling as rotation of two rigid hinge about a hringe point, the relationship between the location of the hinge-point with crack length has been established using finite element analysis for the single-edge notched three point bend specimen. Further -an iterative method has been developed which can be implemented in the background software for on-line crack length measurement. It has been shown that the iterative method converges rapidly to give the crack length with high accuracy
    corecore