41 research outputs found

    Short-term changes on MRI predict long-term changes on radiography in rheumatoid arthritis: an analysis by an OMERACT Task Force of pooled data from four randomised controlled trials

    Get PDF
    Objective: In rheumatoid arthritis (RA), MRI provides earlier detection of structural damage than radiography (X-ray) and more sensitive detection of intra-articular inflammation than clinical examination. This analysis was designed to evaluate the ability of early MRI findings to predict subsequent structural damage by X-ray. Methods: Pooled data from four randomised controlled trials (RCTs) involving 1022 RA hands and wrists in early and established RA were analysed. X-rays were scored using van der Heijde-modified or Genant-modified Sharp methods. MRIs were scored using Outcome Measures in Rheumatology (OMERACT) RA MRI Score (RAMRIS). Data were analysed at the patient level using multivariable logistic regression and receiver operating characteristic curve analyses. Results: Progression of MRI erosion scores at Weeks 12 and 24 predicted progression of X-ray erosions at Weeks 24 and 52, with areas under the curve (AUCs) of 0.64 and 0.74, respectively. 12-week and 24-week changes in MRI osteitis scores were similarly predictive of 24-week and 52-week X-ray erosion progressions; pooled AUCs were 0.78 and 0.77, respectively. MRI changes in synovitis at Weeks 12 and 24 also predicted progression of X-ray joint damage (erosion and joint-space narrowing) at Weeks 24 and 52 (AUCs=0.72 and 0.65, respectively). Conclusions: Early changes in joint damage and inflammation detected with MRI predict changes in joint damage evident on subsequent X-rays. These findings support the use of MRI as a valid method for monitoring structural damage in short-duration RCTs

    Human natural killer cells mediate adaptive immunity to viral antigens

    Get PDF
    Adaptive immune responses are defined as antigen sensitization–dependent and antigen-specific responses leading to establishment of long-lived immunological memory. Although natural killer (NK) cells have traditionally been considered cells of the innate immune system, mounting evidence in mice and nonhuman primates warrants reconsideration of the existing paradigm that B and T cells are the sole mediators of adaptive immunity. However, it is currently unknown whether human NK cells can exhibit adaptive immune responses. We therefore tested whether human NK cells mediate adaptive immunity to virally encoded antigens using humanized mice and human volunteers. We found that human NK cells displayed vaccination-dependent, antigen-specific recall responses in vitro, when isolated from livers of humanized mice previously vaccinated with HIV-encoded envelope protein. Furthermore, we discovered that large numbers of cytotoxic NK cells with a tissue-resident phenotype were recruited to sites of varicella-zoster virus (VZV) skin test antigen challenge in VZV-experienced human volunteers. These NK-mediated recall responses in humans occurred decades after initial VZV exposure, demonstrating that NK memory in humans is long-lived. Our data demonstrate that human NK cells exhibit adaptive immune responses upon vaccination or infection. The existence of human memory NK cells may allow for the development of vaccination-based approaches capable of establishing potent NK-mediated memory functions contributing to host protection

    A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers.</p> <p>Methods</p> <p>39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR and aPFR) in all normal volunteers and hypertensive patients.</p> <p>Results</p> <p>Compared to single-contour propagation methods and the commercial method, VTC by dual-contour propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour propagation agreed with manual (dual-contour – manual PER: -0.12 ± 0.08; ePFR: -0.07 ± 0.07; aPFR: 0.06 ± 0.03 EDV/s, all P = NS). However, the time for the manual method was ~4 hours per study versus ~7 minutes for dual-contour propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of altered diastolic filling rates in hypertensive patients.</p> <p>Conclusion</p> <p>Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.</p

    Applying science in practice: the optimization of biological therapy in rheumatoid arthritis

    Get PDF
    Most authorities recommend starting biological agents upon failure of at least one disease-modifying agent in patients with rheumatoid arthritis. However, owing to the absence of head-to-head studies, there is little guidance about which biological to select. Still, the practicing clinician has to decide. This review explores the application of published evidence to practice, discussing the goals of treatment, the (in) ability to predict individual responses to therapy, and the potential value of indirect comparisons. We suggest that cycling of biological agents, until remission is achieved or until the most effective agent for that individual patient is determined, deserves consideration in the current stage of knowledge

    Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague–Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE(2) and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE(2) in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE(2) and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13020-016-0089-6) contains supplementary material, which is available to authorized users
    corecore