416 research outputs found

    Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings

    Get PDF
    García, Xavier... et. al.-- 14 pages, 9 figures, supporting information http://dx.doi.org/10.1002/2015GC006100We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanicsThis project was initiated as a result of and supported by NSF project-EAR080- 9074 (Evans, lead P.I.) and Spanish National Projects CTM2009-07039-E/ MAR, CTM2011-30400-C02-02 and Repsol funded CO-DOS projectPeer Reviewe

    Structure and activity of the imbricated wedge of the Gulf of Cadiz from MCS images

    Get PDF
    European Geosciences Union General Assembly 2015 (EGU2015), 12-17 April 2015, Vienna, Austria.-- 1 pageIn this work we present new results on the structure and activity of the imbricated wedge of the Gulf of Cadiz based on ~ 3000 km of multichannel (MCS) profiles acquired off NW Moroccan margin. Seismic images indicates that the imbricated wedge is bounded between the Gulf of Cadiz margin at the north, the Kenitra margin at the south and the Rharb margin at the east. It is imaged as a sedimentary body with variable seismic amplitude, and structured by imbricated thrust sheets similar to an accretionary prism. Its maximum thickness is located at the east region of the gulf. It gradually thins toward the center and south of the gulf, where it is buried by ~ 0.3 twts of sedimentary deposits, indicating that the imbricated wedge is actually not growing. It probably stops it s activity at ~ 5-6 Ma. The imbricated wedge is overlaid by sedimentary sequences whose oldest unit is uppermost Tortonian. No evidences of gravitational (olistostrom) origin were founded. Active deformation related to plate convergence corresponds mainly to strike-slip faulting and minor thrusting. Mud diapirism is imaged intruding both the imbricated wedge and the overlaying sediments. At the south, the seismic images show normal faulting probably related with an extended continental crust or a continent-ocean transition crust. The age of this extension is probably Triassic-Jurassic, and we propose it as the conjugated margin of the Gulf of Cadiz. Toward the east, MCS profiles image high-amplitude continent-verging reflections corresponding to perva- sive normal faulting. These deformation related to a extended terrain, named Rharb margin, seems to act as the backstop of the imbricated wedge, and it is over-thrusted by Prebetic/Flysh sequences off the Strait of GibraltarPeer Reviewe

    Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches

    Get PDF
    Water transported by slabs into the mantle at subduction zones plays key roles in tectonics, magmatism, fluid and volatiles fluxes, and most likely in the chemical evolution of the Earth's oceans and mantle. Yet, incorporation of water into oceanic plates before subduction is a poorly understood process. Several studies suggest that plates may acquire most water at subduction trenches because the ocean crust and uppermost mantle there are intensely faulted caused by bending and/or slab pull, and display anomalously low seismic velocities. The low velocities are interpreted to arise from a combination of fluid-filled fractures associated to normal faulting and mineral transformation by hydration. Mantle hydration by transformation of nominally dry peridotite to water-rich serpentinite could potentially create the largest fluid reservoir in slabs and is therefore the most relevant for the transport of water in the deep mantle. The depth of fracturing by normal-fault earthquakes is usually not well constrained, but could potentially create deep percolation paths for water that might hydrate up to tens of kilometers into the mantle, restrained only by serpentine stability. Yet, interpretation of deep intraplate mineral alteration remains speculative because active-source seismic experiments have sampled only the uppermost few kilometers of mantle, leaving the depth-extent of anomalous velocities and their relation to faulting unconstrained. Here we use a joint inversion of active-source seismic data, and both local and regional earthquakes to map the three dimensional distribution of anomalous velocities under a seismic network deployed at the trench seafloor. We found that anomalous velocities are restrained to the depth of normal-fault micro-earthquake activity recorded in the network, and are considerably shallower than either the rupture depth of teleseismic, normal-fault earthquakes, or the limit of serpentine stability. Extensional micro-earthquakes indicate that each fault in the region slips every 2–3 months which may facilitate regular water percolation. Deeper, teleseismic earthquakes are comparatively infrequent, and possibly do not cause significant fracturing that remains open long enough to promote alteration detectable with our seismic study. Our results show that the stability field of serpentine does not constrain the depth of potential mantle hydration

    CRISP-EQ: Costa Rican Seismogenic potential outlined by IODP drilling and the 2002 Osa earthquake sequence

    Get PDF
    Interplate earthquakes in subduction zones are generated in the seismogenic zone, i.e. the segment of the plate boundary where unstable slip occurs. Understanding the mechanisms that control the updip and downdip limits of this zone, as well as the nature and role of asperities within it, provide significant insights into the rupture size and dynamics of the world’s largest earthquakes. The Costa Rica Seismogenesis Project (CRISP) is designed to understand the processes that control nucleation and seismic rupture propagation of large earthquakes at erosive subduction zones (Ranero et al. 2007). In 2002 a magnitude Mw=6.4 earthquake may have nucleated at the subduction thrust to be penetrated and sampled by CRISP, 40 km west of Osa Peninsula (Figure 1). However, global event localization is associated with too large errors to prove that the event actually occurred at a location and depth to be reachable by riser drilling. We have compiled a database including foreshocks, the main shock, and ~400 aftershocks, with readings from all the seismological networks that recorded the 2002 Osa sequence locally (Figure 1). This includes a temporal network of oceanbottom hydrophones (OBH) that happened to be installed close to the area (Arroyo et al. 2009). The greatly improved coverage provided by the OBH enable us to better constrain the event relocations that we are presently undertaking. Within the frame of a proposal recently submitted to DFG with IODP emphasis, detailed inspection of the data and 3-D data modelling will be carried out to yield source parameters that can be rated against structural information from seismic and drilling constraints. Moreover, teleseismic waveform inversion will provide additional constraints for the centroid depth of the 2002 Osa earthquake, allowing further study of the focal mechanism. This sequence is the latest at the Costa Rican seismogenic zone to date, in a segment of the erosional margin where seamount-covered oceanic floor is presently subducting (Figure 1). It took place trenchward from a 1999 Mw=6.9 earthquake sequence, that it is thought to have been nucleated by a seamount acting like an asperity (Bilek et al. 2003). The work proposed here aims to provide definite evidence that the planned Phase B of CRISP will be successful in drilling the seismogenic coupling zone. Furthermore, the seismological data will be interpreted jointly with thermal and drilling data from IODP Expedition 334 to refine the link between temperature and seismogenesis at erosive convergent margins

    Interplate seismicity at the CRISP site: the 2002 Osa earthquake sequence

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) is designed to explore the processes involved in the nucleation of large interplate earthquakes in erosional subduction zones. On 16 June 2002 a magnitude Mw=6.4 earthquake and its aftershocks may have nucleated at the subduction thrust to be penetrated and sampled by CRISP, ~40 km west of Osa Peninsula. Global event locations present uncertainties too large to prove that the event actually occurred at a location and depth reachable by riser drilling. We have compiled a database including foreshocks, the main shock, and ~400 aftershocks, with phase arrival times from all the seismological networks that recorded the 2002 Osa sequence locally. This includes a temporal network of ocean-bottom hydrophones (OBH) that happened to be installed close to the area at the time of the earthquake. The coverage increase provided by the OBH network allow us to better constrain the event relocations, and to further analyze the seismicity in the vicinity of Osa for the six months during which they were deployed. Moreover, we undertook teleseismic waveform inversion to provide additional constraints for the centroid depth of the 2002 Osa earthquake, allowing further study of the focal mechanism. Along the Costa Rican seismogenic zone, the 2002 Osa sequence is the most recent. It nucleated in the SE region of the forearc where this erosional margin is underthrust by a seamount covered ocean plate. A Mw=6.9 earthquake sequence occurred in 1999, co-located with a subducted ridge and associated seamounts. The Osa mainshock and first hours of aftershocks began in the CRISP area, ~30 km seaward of the 1999 sequence. In the following two weeks, subsequent aftershocks migrated into the 1999 aftershock area and also clustered in an area updip from it. The Osa updip seismicity apparently occurred where interplate temperatures are ~100°C or less. In this study, we present the relocation of the 2002 Osa earthquake sequence and background seismicity using different techniques and a moment tensor inversion for the mainshock, and discuss the corresponding uncertainties, in an effort to provide further evidence that the planned Phase B of CRISP will be successful in drilling the seismogenic coupling zone

    tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    Get PDF
    European Geosciences Union General Assembly 22-27 April 2012, Vienna, Austria.-- 1 pageWe present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat’s principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also offers the possibility of including water-layer multiples in the modeling, whenever this phase can be followed to greater offsets than the primary phases. This increases the quantity of useful information in the data and yields more extensive and better constrained velocity and geometry models. We will present results from benchmark tests for forward and inverse problems, as well as synthetic tests comparing an inversion with refractions only and another one with both refractions and reflectionPeer Reviewe

    Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    Get PDF
    18 pages, 9 figures, supporting information https://dx.doi.org/10.1002/2016JC011844This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ∼ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulationThe work has been partially supported by the projects KALEIDOSCOPE and CO-Dos financed by REPSOL and MINECO project POSEIDON (CTM2010-21569) and HADES (CTM2011-30400-C02). B. Biescas work has been funded by the European Commission through the Marie Curie Action FP7-PEOPLE-2012-COFUND-600407Peer Reviewe

    Rifting of the north-western South China Sea Basin from MCS images

    Get PDF
    European Geosciences Union General Assembly 2014 (EGU2014), 27 april - 2 may 2014, Vienna, Austria.-- 1 pageWe have reprocessed about 2250 km of multichannel seismic reflection data collected during cruise Sonne 49 across the NW South China Sea. We present images across four regional lines that cross the outer continental shelf and slope, and extend into the deep-water basin. The seismic images are of high quality and show the crustal structure from clear base-of-the-crust reflections to continuous top-of-basement reflections and a well imaged syn-rift and post rift stratigraphy and intrusive magmatic layering. In addition, fault reflections in the basement are also common. The crystalline basement and sediment strata display a series of structures that change laterally from the continental shelf to the deep-water basin and that have been used to define a continental domain, an abrupt continent to ocean transition and an oceanic domain. Existing wide-angle data coincident with our lines support our interpretation. The style of continental extension, the structures defining the continent to ocean transition, and the distribution of oceanic crust in the basin has been used to propose a tectonic model of the formation of the NW South China Sea continental margin. The data document the three-dimensional temporal evolution of the interplay between rifting processes and seafloor spreading leading to the current structural configurationPeer Reviewe
    corecore