64 research outputs found

    Biogenesis of γ-secretase early in the secretory pathway

    Get PDF
    γ-Secretase is responsible for proteolytic maturation of signaling and cell surface proteins, including amyloid precursor protein (APP). Abnormal processing of APP by γ-secretase produces a fragment, Aβ42, that may be responsible for Alzheimer's disease (AD). The biogenesis and trafficking of this important enzyme in relation to aberrant Aβ processing is not well defined. Using a cell-free reaction to monitor the exit of cargo proteins from the endoplasmic reticulum (ER), we have isolated a transient intermediate of γ-secretase. Here, we provide direct evidence that the γ-secretase complex is formed in an inactive complex at or before the assembly of an ER transport vesicle dependent on the COPII sorting subunit, Sec24A. Maturation of the holoenzyme is achieved in a subsequent compartment. Two familial AD (FAD)–linked PS1 variants are inefficiently packaged into transport vesicles generated from the ER. Our results suggest that aberrant trafficking of PS1 may contribute to disease pathology

    Discovery of the cellular and molecular basis of cholesterol control

    No full text
    The cellular control of cholesterol metabolism mediated by lipoproteins was first appreciated in pioneering work published in a 1974 PNAS Classic by Michael Brown and Joseph Goldstein. We know from this paper that the LDL binds to a cell surface receptor and dampens the activity of a key enzyme in cholesterol biosynthesis and that a receptor deficiency is responsible for a major genetic cause of hypercholesterolemia and premature atherosclerosis. endocytosis | HMG-CoA | reductase | lysosom

    A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network

    No full text
    Planar cell polarity (PCP) requires the asymmetric sorting of distinct signaling receptors to distal and proximal surfaces of polarized epithelial cells. We have examined the transport of one PCP signaling protein, Vangl2, from the trans Golgi network (TGN) in mammalian cells. Using siRNA knockdown experiments, we find that the GTP-binding protein, Arfrp1, and the clathrin adaptor complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast, TGN export of Frizzled 6, which localizes to the opposing epithelial surface from Vangl2, does not depend on Arfrp1 or AP-1. Mutagenesis studies identified a YYXXF sorting signal in the C-terminal cytosolic domain of Vangl2 that is required for Vangl2 traffic and interaction with the μ subunit of AP-1. We propose that Arfrp1 exposes a binding site on AP-1 that recognizes the Vangl2 sorting motif for capture into a transport vesicle destined for the proximal surface of a polarized epithelial cell

    Neurodegeneration-associated mutant TREM2 proteins abortively cycle between the ER and ER-Golgi intermediate compartment.

    No full text
    Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein expressed on microglia within the brain. Several rare mutations in TREM2 cause an early-onset form of neurodegeneration when inherited homozygously. Here we investigate how these mutations affect the intracellular transport of TREM2. We find that most pathogenic TREM2 mutant proteins fail to undergo normal maturation in the Golgi complex and show markedly reduced cell-surface expression. Prior research has suggested that two such mutants are retained in the endoplasmic reticulum (ER), but we find, using a cell-free coat protein complex II (COPII) vesicle budding reaction, that mutant TREM2 is exported efficiently from the ER. In addition, mutant TREM2 becomes sensitive to cleavage by endoglycosidase D under conditions that inhibit recycling to the ER, indicating that it normally reaches a post-ER compartment. Maturation-defective TREM2 mutants are also efficiently bound by a lectin that recognizes O-glycans added in the ER-Golgi intermediate compartment (ERGIC) and cis-Golgi cisterna. Finally, mutant TREM2 accumulates in the ERGIC in cells depleted of COPI. These results indicate that efficient ER export is not sufficient to enable normal cell-surface expression of TREM2. Moreover, our findings suggest that the ERGIC may play an underappreciated role as a quality-control center for mutant and/or malformed membrane proteins

    Protein sorting at the trans Golgi Network

    No full text
    The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease

    ALG-2 Attenuates COPII Budding In Vitro and Stabilizes the Sec23/Sec31A Complex

    Get PDF
    <div><p>Coated vesicles mediate the traffic of secretory and membrane cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The <u>co</u>at <u>p</u>rotein complex (COPII) involved in vesicle budding is constituted by a GTPase, Sar1, the inner coat components of Sec23/Sec24 and the components of the outer coat Sec13/Sec31A. The Ca<sup>2+</sup>-binding protein ALG-2 was recently identified as a Sec31A binding partner and a possible link to Ca<sup>2+</sup> regulation of COPII vesicle budding. Here we show that ALG-2/Ca<sup>2+</sup> is capable of attenuating vesicle budding in vitro through interaction with an ALG-2 binding domain in the proline rich region of Sec31A. Binding of ALG-2 to Sec31A and inhibition of COPII vesicle budding is furthermore dependent on an intact Ca<sup>2+</sup>-binding site at EF-hand 1 of ALG-2. ALG-2 increased recruitment of COPII proteins Sec23/24 and Sec13/31A to artificial liposomes and was capable of mediating binding of Sec13/31A to Sec23. These results introduce a regulatory role for ALG-2/Ca<sup>2+</sup> in COPII tethering and vesicle budding.</p></div
    • …
    corecore