6 research outputs found

    Leveraging New Plans in AgentSpeak(PL)

    Get PDF
    Many papers have been written on the anticancer properties of dietary flavonoids, and a range of potential mechanisms of action of flavonoids. However, most dietary flavonoids - notably polyphenolic flavonoids—have very poor ADME properties, and the levels necessary to stop growth of tumour cells cannot be sustained in a human body trough dietary intake alone. At present no flavonoid based drugs are clinically used in cancer therapy. Thus, whereas epidemiological and pre-clinical data seem to indicate a high potential for flavonoids, from the point of view of the pharmaceutical industry and drug developers, they are considered poor candidates. The flavones—which constitute a subgroup of the flavonoids—show some structural analogy with oestrogen and are known to interact with human oestrogen receptors, either as agonist or as antagonist. They are classed as phytoestrogens, and may play a role in cancer prevention through a mechanism of action possibly similar to that of the clinically used medication tamoxifen. Flavones are abundantly present in common fruits and vegetables, many of which have been associated with cancer prevention. Their phytoestrogen activity makes that they can assert their biological action at concentrations that are realistically achievable in the human systemic circulation

    Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua

    No full text
    Background and Aims: The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua – in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plant’s nutritional requirements for nitrogen and potassium. Methods: Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L21 being applied, while the other differing in potassium concentration (51, 153 or 301 mg L21). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield. Key Results: Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L21 for biomass and 206 mg N L21 for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L21, but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L21 increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield. Conclusions: Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration. Maximization of artemisinin yield (amount per plant) requires optimization of plant biomass via control of nitrogen nutrition
    corecore