425 research outputs found

    Vortices in Superfluid Fermi Gases through the BEC to BCS Crossover

    Get PDF
    We have analyzed a single vortex at T=0 in a 3D superfluid atomic Fermi gas across a Feshbach resonance. On the BCS side, the order parameter varies on two scales: kF1k_{F}^{-1} and the coherence length ξ\xi, while only variation on the scale of ξ\xi is seen away from the BCS limit. The circulating current has a peak value jmaxj_{max} which is a non-monotonic function of 1/kFas1/k_F a_s implying a maximum critical velocity vF\sim v_F at unitarity. The number of fermionic bound states in the core decreases as we move from the BCS to BEC regime. Remarkably, a bound state branch persists even on the BEC side reflecting the composite nature of bosonic molecules.Comment: 4 Pages, 4 Figure

    Collective modes of trapped gases at the BEC-BCS crossover

    Full text link
    The collective mode frequencies in isotropic and deformed traps are calculated for general polytropic equation of states, Pnγ+1P\propto n^{\gamma+1}, and expressed in terms of γ\gamma and the trap geometry. For molecular and standard Bose-Einstein condensates and Fermi gases near Feshbach resonances, the effective power γ0.51.3\gamma\simeq0.5-1.3 is calculated from Jastrow type wave-function ans\"atze, and from the crossover model of Leggett. The resulting mode frequencies are calculated for these phases around the BCS-BEC crossover.Comment: Revised version to be published in PR

    Superfluidity in Three-species Mixture of Fermi Gases across Feshbach Resonances

    Full text link
    In this letter a generalization of the BEC-BCS crossover theory to a multicomponent superfluid is presented by studying a three-species mixture of Fermi gas across two Feshbach resonances. At the BEC side of resonances, two kinds of molecules are stable which gives rise to a two-component Bose condensate. This two-component superfluid state can be experimentally identified from the radio-frequency spectroscopy, density profile and short noise measurements. As approaching the BCS side of resonances, the superfluidity will break down at some point and yield a first-order quantum phase transition to normal state, due to the mismatch of three Fermi surfaces. Phase separation instability will occur around the critical regime.Comment: 4 pages, 3 figures, revised versio

    Laser cooling all the way down to molecular condensate

    Full text link
    Numerical simulations show that laser cooling of fermions on the repulsive side of the Feshbach resonance can sympathetically cool molecules well below their condensation temperature.Comment: 7 pages, 2 .eps figure

    First Order Superfluid to Bose Metal Transition in Systems with Resonant Pairing

    Full text link
    Systems showing resonant superfluidity, driven by an exchange coupling of strength gg between uncorrelated pairs of itinerant fermions and tightly bound ones, undergo a first order phase transition as gg increases beyond some critical value gcg_c. The superfluid phase for ggcg \leq g_c is characterized by a gap in the fermionic single particle spectrum and an acoustic sound-wave like collective mode of the bosonic resonating fermion pairs inside this gap. For g>gcg>g_c this state gives way to a phase uncorrelated bosonic liquid with a q2q^2 spectrum.Comment: 5 pages, 3 figure

    Universal Properties of the Ultra-Cold Fermi Gas

    Get PDF
    We present some general considerations on the properties of a two-component ultra-cold Fermi gas along the BEC-BCS crossover. It is shown that the interaction energy and the ground state energy can be written in terms of a single dimensionless function h(ξ,τ)h({\xi,\tau}), where ξ=(kFas)1\xi=-(k_Fa_s)^{-1} and τ=T/TF\tau=T/T_F. The function h(ξ,τ)h(\xi,\tau) incorporates all the many-body physics and naturally occurs in other physical quantities as well. In particular, we show that the RF-spectroscopy shift \bar{\d\o}(\xi,\tau) and the molecular fraction fc(ξ,τ)f_c(\xi,\tau) in the closed channel can be expressed in terms of h(ξ,τ)h(\xi,\tau) and thus have identical temperature dependence. The conclusions should have testable consequences in future experiments

    Can one determine the underlying Fermi surface in the superconducting state of strongly correlated superconductors?

    Get PDF
    The question of determining the underlying Fermi surface (FS) that is gapped by superconductivity (SC) is of central importance in strongly correlated systems, particularly in view of angle-resolved photoemission experiments. Here we explore various definitions of the FS in the superconducting state using the zero-energy Green's function, the excitation spectrum and the momentum distribution. We examine (a) d-wave SC in high Tc cuprates, and (b) the s-wave superfluid in the BCS-BEC crossover. In each case we show that the various definitions agree, to a large extent, but all of them violate the Luttinger count and do not enclose the total electron density. We discuss the important role of chemical potential renormalization and incoherent spectral weight in this violation.Comment: 4 pages, 4 figures, version 3, Added new figures, detailed discussion of result

    Quantum phase transitions in the Fermi-Bose Hubbard model

    Full text link
    We propose a multi-band Fermi-Bose Hubbard model with on-site fermion-boson conversion and general filling factor in three dimensions. Such a Hamiltonian models an atomic Fermi gas trapped in a lattice potential and subject to a Feshbach resonance. We solve this model in the two state approximation for paired fermions at zero temperature. The problem then maps onto a coupled Heisenberg spin model. In the limit of large positive and negative detuning, the quantum phase transitions in the Bose Hubbard and Paired-Fermi Hubbard models are correctly reproduced. Near resonance, the Mott states are given by a superposition of the paired-fermion and boson fields and the Mott-superfluid borders go through an avoided crossing in the phase diagram.Comment: 4 pages, 3 figure

    From Cooper Pairs to Composite Bosons: A Generalized RPA Analysis of Collective Excitations

    Full text link
    The evolution of the ground state and the excitation spectrum of the two and three dimensional attractive Hubbard model is studied as the system evolves from a Cooper pair regime for weak attraction to a composite boson regime for a strong attraction.Comment: 20 pages RevTex, 7 figures on reques

    Deviations from Fermi-liquid behavior above TcT_c in 2D short coherence length superconductors

    Full text link
    We show that there are qualitative differences between the temperature dependence of the spin and charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simulations. The one-particle density of states shows a pseudogap above \tc with a depleted N(0)N(0) with decreasing TT. The susceptibility \cs and the low frequency spin spectral weight track N(0)N(0), which explains the spin-gap scaling: 1/T_1T \sim \cs(T). However the charge channel is dominated by collective behavior and the compressibility dn/dμdn/d\mu is TT-independent. This anomalous ``spin-charge separation'' is shown to exist even at intermediate U|U| where the momentum distribution n(\bk) gives evidence for degenerate Fermi system.Comment: 4 pages (twocolumn format), 5 Postscript figure
    corecore