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Universal properties of the ultracold Fermi gas
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We present some general considerations on the properties of a two-component ultracold Fermi gas along the
BEC-BCS crossover. It is shown that the interaction energy and the free energy can be written in terms of a
single dimensionless function A(&, 7), where é=—(kpa,)~" and 7=T/T}. The function h(&, 7) incorporates all the
many-body physics and naturally occurs in other physical quantities as well. In particular, we show that the
average rf-spectroscopy shift %(5, 7) and the molecular fraction f.(¢,7) in the closed channel can be ex-
pressed in terms of A(&,7) and thus have identical temperature dependence. The conclusions should have

testable consequences in future experiments.
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I. INTRODUCTION

Over the past few decades, there has been considerable
effort and progress in understanding the physics of ultracold
Fermi gases [1-4]. In general, the theoretical investigations
fall into two categories depending on how one incorporates
the physics of Feshbach resonances. In the so-called single-
channel model, one neglects the closed-channel component,
while incorporating its effects through the open-channel scat-

tering length a,, given by
AB
), (1)

" B-B,

aS(B) = abg< 1

where a, is the background scattering length in the absence
of inter-channel coupling and B is the external magnetic
field. AB is the width of the resonance and B, is the position
of the resonance. See Table V in Ref. [5] for a list of values
of these parameters for the alkali-metal elements currently
under investigation. The approximation is valid in the case of

a so-called broad resonance where €,<<d,.. Here € is the
S.= (ApAB)?

€ 2h%/mag,
ing the typical energy scale associated with the two-body
Feshbach resonance [7]. Au is the magnetic moment differ-
ence between open and closed channels. The physics of the
single-channel model is essentially the same as in the cross-
over model studied decades ago in the literature [8-10].
Most experimental systems (e.g., °Li at magnetic field B
=834 G) fall into this category. In general, any system with
sufficiently low density will be described by a single-channel
model.

The problem associated with a single-channel model is
easily stated: Given a spin—% Fermi gas with both spin com-
ponents equally populated, with interactions only between
opposite spin states, characterized by the s-wave scattering
length a,(B), what are the ground state and thermodynamic
properties? At zero temperature, neglecting finite range cor-
rections, the only relevant parameter is é=—(kpa,)~". The ba-
sic question concerning the static properties of the system is
how to find the ground-state energy E(&). At finite tempera-
ture, the most important questions are the calculation of the
thermodynamic potential and in particular the location of the
phase transition boundary T-(§) as a function of & see Ref.
[11] and references therein. Up to now, these problems have

Fermi energy of the system and [6], characteriz-
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not been amenable to analytic solutions; our most reliable
knowledge of those quantities comes from Monte Carlo
simulations [12-18].

For most experiments, it is sufficient to use the single-
channel model as the theoretical framework to interpret
them. However, there are certain cases in which we are in-
terested in the physics of the closed channel specifically for a
broad Feshbach resonance, as in the case of the Rice experi-
ment to be discussed later [19]. Furthermore, in the so-called
narrow resonance case in which €= J,, the molecular states
in the closed channel cannot be neglected. For these reasons,
we have to start with the more general two-channel model
[20-22], which incorporates the closed channel on the same
footing as the open channel. Typically, one introduces a
bosonic operator W(r), which creates a closed-channel mol-
ecule with center-of-mass position 7 and incorporates its ef-
fects through the coupling term in the Hamiltonian,

g (A (N (7) + Hee), 2)

where g is the bare coupling constant. Note that the coupling
scheme above enforces the momentum conservation in the
conversion processes and thus the momentum distribution of
closed-channel molecules is intimately connected with the
open-channel pair states. We shall return to this point later.
Note also that the internal structure of the closed-channel
molecule is frozen as a result of its high internal excitation
energy, which is much larger than any other energy scales
relevant for many-body physics.

In general, exact solutions or even general statements
about the above two models are quite difficult. However, at
resonance, i.e., £=0, a, drops out of the problem and we are
left with only two energy scales, ex=%2/2m(37°n)*> and the
temperature 7. Here m is the mass of the atom and 7 is the
density of the system. Thus, it follows from dimensional
analysis that one may write the average single-particle en-
ergy of the system at finite temperature as €(£=0,7)
=epfp(£=0,7), where f£(£=0, 7) is a dimensionless function
and 7=T/Tr=kgT/€p, where kp is the Boltzmann constant.
In particular, at 7=0, the average single-particle energy is
proportional to €p, with universal constant fz(¢=0,7=0)
E%(1+ B). The parameter B has been calculated in many
ways in the literature and is in good agreement with experi-

©2009 The American Physical Society
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ments. See Table II in [2] for a summary of values of B
obtained theoretically and experimentally. By the same argu-
ment, one can write down other thermodynamic quantities of
the system, with the conclusion that the thermodynamic
properties of the system are universal regardless of the par-
ticular system under investigation [23].

The universal thermodynamics works only at unitarity.
However, it is possible to generalize the idea to the param-
eter space where £#0. It is recognized that for d>2, the
system is controlled by an unstable fixed point that resides
near the Feshbach resonance in the zero density limit with
attractive interactions [24]. By utilizing a large-N expansion
as applied to the Sp(2N) model [24,25], one can calculate the
scaling form of the canonical free energy of the system. In
Ref. [25], the same technique has been used to investigate
the polarized case as well. The e expansion has also been
used to investigate the properties of the two-component
Fermi gas away from resonance [26,27].

There is, however, another form of “universality” that is
more deeply rooted in the actual physical properties of the
system. For example, by examining the short-range form of
the many-body wave function, one can show that several
physical quantities (interaction energy, rf-spectroscopy shift,
etc.) depend on temperature 7 through one universal function
h(&, 7). This universal dependence comes about because of
one peculiar property of the dilute Fermi gases: the range of
the interaction is much smaller than the interparticle dis-
tance, i.e., kpry<<1, where r( is the range of the potential.
Thus, important effects associated with interactions come
mostly from two-body encounters. The argument presented
below can then be regarded as an expansion in terms of kgr,.
Let us note that this argument can be trivially modified in the
case of the imbalanced Fermi gas.

The organization of the paper is the following. In Sec. II,
we give a general discussion of the physical system in terms
of the two-body density matrix and separate the two-body
and many-body contributions in it. In Sec. III, we apply the
result of Sec. II to several physical quantities and show that
they can be written in terms of one universal function i(¢, 7)
which carries all the many-body dependence. There are re-
sidual & dependences as a result of the two-body physics,
which can in principle be calculated without any reference to
the many-body system. The temperature dependence of those
physical quantities is universal and has experimental conse-
quences as described in Sec. III. In IV, the main conclusions
of the paper are summarized and discussed. In the Appendix,
we give an alternative derivation of the linear ¢ dependence
of the energy of the system away from resonance, based on
the many-body wave functions.

II. GENERAL SETUP

The difficulties involved in analyzing either the single-
channel or the two-channel model are often expressed as a
lack of a small parameter because of the resonant interaction
condition na3> 1, which prevents a relatively straightfor-
ward perturbation calculation as in the classic dilute Fermi
gas [28-30]. The challenge lies in the correct implementa-
tion of the two-body physics, characterized by the “danger-
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ous” diverging scattering length a,, into the many-body cal-
culations. One way to circumvent the difficulty is to devise
another small parameter, as in the € expansion [26] or 1/N
expansion [24,25] utilized in recent work. On the other hand,
even though the parameter na3> 1, we still have the small
parameter kyry, where r is the range of the potential. Note
that in most investigations using the single- or two-channel
model, the zero-range limit has already been taken; an ex-
ception is the case of a narrow resonance [31]. In the follow-
ing, we will try to set up an approximation scheme that uti-
lizes the smallness of kgry. Even though it does not yield
immediately a computational tool for the values of specific
constants, say 3, it does lead to some general conclusions
independent of the approximation scheme employed in a
specific investigation.

To motivate our discussion, let us consider the many-body
wave function for a spin—% Fermi system with both spin com-
ponents equally populated. We denote the total number of
atoms N. For example, we consider a collection of Li atoms
in their lowest two hyperfine-Zeeman states (|1) and |2)). Let
us write down its many-body wave function as
W(r 0,720, " Fyoy). Now, we separate two atoms, say
atom 1 and atom 2, with opposite spin orientations, far (com-
pared to ry) from all the other atoms (3,4, ...,N), and ask
what is the form of the many-body wave function when the
distance between 7, and 7, is taken to lie within the range of
two-body interacting potential, i.e., |7} —7,| < r,. Since all the
other N—2 atoms cease to interact with atom 1 and atom 2,
we conclude that

R l{m ’\I}(Fla'l,;za'z"'FNO'N)
lFy=ral=rg

< AP(r) — 1) 2 W (P03, 7404+~ Fyoy). (3)

Here A is the trivial antisymmetrization operator and 2, is
the spin wave function of atoms 1 and 2. ¢(7,—7,) is deter-
mined by the two-body interaction potential in the range
|Fi=75| =7ro. In order for the other N-2 atoms to affect the
form of ¢(r,—r,), it is necessary that a third atom is at a
distance =<r,. Such a process is highly unlikely for two rea-
sons. First, the phase space of such an event is down by at
least a factor (kzr,)® as compared with the two-body encoun-
ters. Secondly, in a spin—% system, two of the three atoms
close together must have the same spin, thus the Pauli exclu-
sion principle will prevent such a process from occurring. In
fact, to the extent that we can work entirely in terms of the
s-wave scattering length a,, we have automatically neglected
the contributions from higher partial wave scattering, which
are of order (kpr,)” or higher. We thus conclude that, to order
kgrg, the short-range behavior of the many-body wave func-
tion (in particular its nodal structure) is determined by two-
body physics. An important question pertains to the form of
the two-body wave function ¢(r,—r,), since, in general, the
two-body potential can host several bound states. Here we
note that since the many-body energy scale is much smaller
than the energy splitting between the different energy levels
in the potential well, it is easy to convince oneself that only
the bound state that is closest to the scattering continuum is
relevant. This state is merely the molecular state on the
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Bose-Einstein Condensate (BEC) side of the crossover. Here
we emphasize that even on the BCS side, where the two-
body bound state emerges above the scattering continuum,
the above conclusion still holds. To conclude this intuitive
discussion, we must point out that at this stage, we do not yet
know the normalization of the short-range part of the many-
body wave function. This will be determined by the many-
body physics.

To make the above argument more precise, let us consider
the two-body density matrix for a generic many-body sys-
tem. The definition of the two-body density matrix is given

by [7]

p(Fla»FZB;;377;45;t) = <lr/l:;(;1’t)lp}?(;%t)lr//y(;?nt)l//zs(;4»[)>-
4)

Here i,(r,t) is the Heisenberg field operator for a fermion
with spin «a. In the following, we shall consider only an
equilibrium situation and thus drop the time ¢ from the above
expression. By the hermiticity property of the density matrix,
we can decompose the two-body density matrix in the fol-
lowing form [7]:

> N - - i)k, > - N> -
P\ FofBi 757, 740) = 2 micpi (Fos P ) B (5)

i

The eigenvalues n; and eigenfunctions (Z)%(Fl,@) satisfy
the following conditions: 2n;=N(N-1) and
>, fd371fd3i72¢;);(72,Fl)qﬁg()y(ﬂ,72)=8,-j. As  discussed
above, in the case of a dilute Fermi gas, the only relevant
parameter is é=—(kza,)™' and 7. Thus n; and ¢g,(r>, 7)) will
depend on ¢ and 7 parametrically. Now, by the argument
given above in terms of the many-body wave function, we
see that the short-range form of ¢,4(r;—r,) will be deter-
mined by two-body physics, while many-body physics will
determine the eigenvalues n; and the long-range part of the
eigenfunctions. Our philosophy in the following will be to
express several physical quantities in terms of the two-body
density matrix and use the above facts to extract their uni-
versal dependence on temperature. To be successful, we need
our expressions to pick up only the short-range part of the
two-body density matrix so that all the temperature depen-
dence will be carried by n;’s and the normalizations for the
pair wave functions. Physically, as we change the tempera-
ture and the interaction strength, the occupation numbers of
the pair wave functions d)(;)ﬁ change while the short-range
part of the pair wave function remains the same. Let us thus
consider an arbitrary short-range (~r,) function s(r;—7r,)
and consider the integral

deld;zs(;l — P (F) YA o (72) g (7))

=2”i(§,7')fs(ﬂ—F2)|¢(12(;1,72)|2d;1d;2- (6)

It is clear that in the above equation, we need only retain the
s-wave part of the pair wave function, since higher partial
waves have vanishing probability at the origin and thus
hardly contribute to the above integral. Thus, we can write
P71, ) = Q2P L2 0 Yo/ v, where  r=|F) 7|
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and Y;, is the [=m=0 spherical harmonics. The factor
Q120w 11+72)2] describes the center-of-mass motion of the
pair state. Then the right-hand side of Eq. (6) can be written
as

S n(en [ arstol ol )

By the above argument, x,,(r) will have the form of the
two-body radial wave function at short distance. In particu-
lar, in the region where a, k;l >r=r, we can write X(g(’")
=CY(&, 7)x12(r), where

Xl =1- ai (8)

s

has been normalized in such a way that it approaches 1 in the
region a, k;l >r=r,. The Cs are some constants that in
principle depend on the many-body physics. Equation (6)
can then be written as

f dfldfzs(ﬂ - ;2)<¢T(71)¢§(72)¢2(’72) ¢1(’71)>

=S g | NP f drs( [T

Eh(§9 T)kFNf drs(r)|)_(12(r) 25 (9)

where we have defined a positive-definite universal function
(@)

Wen =3 8D el e >0, (10)

i Nkp

The factor kg is inserted in order to make h(&,7) a dimen-
sionless function. The integral in Eq. (9) is a constant de-
pending on the function s(r), but it is purely a two-body
quantity and can be calculated without making reference to
the many-body system. In particular, it does not depend on
the temperature 7. We note further that the integral displays
no singular dependence on a, as we approach the resonance.
Thus for the discussion of many-body physics, it can be re-
garded as a known parameter. The intricate many-body cor-
relations are then incorporated in one universal function
h(&,7) and are themselves universal. As we shall show later,
at unitarity, 2(£€=0,7) must be finite and thus we conclude
Eq. (9) scales with kg at unitarity. We also note that a similar
quantity, called contact intensity, is defined by Tan [32].
Later, in Ref. [33], Braaten and Platter have rederived some
results regarding “contact intensity” using field theoretical
method; see Sec. 111 B.

Before ending the discussion of this section, let us remind
ourselves of the assumptions made so far:

(a) Only s-wave scattering is important. The neglect of
higher angular momentum (%[) partial waves is justified be-
cause they are of relative order (kzr,)* and thus negligible as
compared with s-wave scattering. In fact, in the model
Hamiltonian considered in the literature, only s-wave scatter-
ing is included.
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(b) The short-range form of the pair function y(7;—7,) is
determined by two-body physics and, moreover, corresponds
to only one particular form of the two-body wave function in
the range ~r(. The former assumption is justified because of
(i) the diluteness of the system kpro<<1 and (ii) the “ex-
change hole:” the Pauli principle forbids two particles with
like spin to be close to each other. The later assumption
comes from energetic considerations: as long as we are in-
terested in the many-body physics, which has a typical en-
ergy scale €, the relevant two-body state is the one that is
closest to the zero-energy scattering state, with all the other
two-body states too far away to be of any practical impor-
tance.

In the following, we shall consider a uniform system with
density n at temperature 7. The interactions between par-
ticles can be written as

1 L. L L= -
_2U(”i—"j)+g(”i—”j)5i'5j]~ (11)
2,-71-

Here f(r) and g(r) are the direct and exchange interaction,

respectively. S is the spin operator of the valence electron of
the atom under consideration. Experimentally, one normally
works with an equal population of atoms (say °Li) in the
lowest two hyperfine states |1) and |2). To the extent that one
can neglect the closed-channel component, as is the case for
a broad resonance, one may replace the full interaction by an
effective short-range interaction in the open channel V,(r)
=V(r,\), where \ is a controlling parameter by which one
can tune the scattering length a, [7]. However, in discussing
the closed-channel population, it is necessary to introduce
explicitly the inter-channel coupling term W(7), which con-
verts open-channel pair states to closed-channel molecules;
see the discussion in Sec. III D.

II1. PHYSICAL QUANTITIES

In the following, we shall discuss several physical quan-
tities that can be expressed in terms of the universal function
h(&,7) and thus display universal dependence on the tem-
perature 7.

A. Interaction energy

The simplest physical quantity that can be cast in the form
of Eq. (9) is the interaction energy of the system. According
to the discussion above, since the interactions between par-
ticles are of short-range form, we can write the interaction
energy per particle %2 as

1 P R -
X]Jd?ldFZV(fl—’3)(‘”(71)lﬂﬁ(’”z)‘ﬁz(’”z)%(”l))

= CV(as)th(g’ T)’ (12)

where Cy(a,) = [drV(r)|x;2(r)|* is a well-defined, purely
two-body quantity. All the many-body dependence of inter-
action energy is encapsulated in the universal function
h(¢&, 7). Since the interaction energy must be well-defined at
unitarity, #(&,7) must be finite, and moreover free of any
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divergence as & approaches zero. Thus the average interac-
tion energy per particle %2 scales as ky at unitarity. The in-
teraction energy of the system depends on microscopic de-
tails of the system, even at unitarity, as is clear from the
factor Cy(a). This result should be compared with the total
energy of the system, to be discussed in the next subsection,
which is proportional to the Fermi energy e at unitarity,
independent of microscopic details.

B. Universal thermodynamics

We first consider the case at temperature 7=0. To derive
an expression for the total energy of the system, we first
recall that, if \ is the tuning parameter of the potential by
which the scattering length can be varied (see the Appendix),
then the relation between a; and \ is given by

= ( J ) dr‘W(r’”|wr>|2>&. (13)
0

sa;'=——
s h? O\

On the other hand, according to the Hellmann-Feynman

theorem, we have

JE AV(r,\

E_( M (14)
)N O\

with the average taken over the many-body state as in Eq.
(6). Since %} is a short-ranged function, we can use Eq. (13)
to rewrite Eq. (14) in terms of a;l; we find [33,34]

JE R’
07—;1 =- ;Nkph(g). (15)
Here we have used the definition of i(£) in Eq. (9) and
h(&)=h(&,7). Or in terms of é=—(kpa,)™!,
2,2

A N(®) = 2€pNA(®). (16)

g m
Since by definition 4(€) is a positive-definite function, we
find the somewhat trivial result that the ground-state energy
is a monotonically increasing function of & The boundary
condition on the above differential equation is easily ob-
tained. Consider the case in which £é=+0. We then have a
free Fermi gas with the average single-particle energy e(¢
=00) = 1%:%6,:. Integrating Eq. (16), we find that the single-
particle energy at zero temperature along the BEC-BCS
crossover is given by

[

3
6(§)=§€p—26Fj h(§)d¢', (17)
¢

where €(é) = e(&, 7=0). Intuitively, h(€) accounts for the re-
duction of the single-particle energy due to interaction ef-
fects. At unitarity, y=e(¢=0,7=0)=(1 +B)§ep, so we find

p=- 2| werae. (19)
0

Around unitarity where £<< 1, we can obtain an expansion of
the average single-particle energy in terms of & To this end,
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we can integrate Eq. (16) from &' =0 to &' =¢ and we find

¢
e(§) - E(§=O)=26Ff h(&)d¢'. (19)
0

For £ close to zero, the question reduces to the expansion of
h(&). From the discussion in the previous subsection, we
know h(£€=0) is finite, so we conclude the energy correction
away from unitarity is linear in & and given by

€(§) - e(§=0)=2€h(§=0)E+ -+ (20)

At zero temperature, the value of 4(£=0,7=0) can be calcu-
lated using the € expansion, where one has to sum over all
the higher-order logarithms in order to recover the correct
linear ¢ dependence of the energy [27]. Instead of referring
back to the conditions imposed by the interaction energy on
the function A(&,7), one can have a direct derivation of the
linear ¢ dependence of the energy away from unitarity by a
straightforward generalization of the argument in the two-
body case. This is presented in the Appendix.

The generalization of the above considerations to finite
temperature is straightforward. However, it is important to
bear in mind that at finite temperature, in order for Eq. (16)
to be correct, we have to consider the adiabatic process, in
which the entropy of the system is kept constant as we
change ¢, i.e.,

% = 2eNh(£ 7). 1)

S

At finite temperature, Egs. (17)—(20) are still right with the
replacement of h(€) by h(€,7), provided that we are consid-
ering an adiabatic process. We can use thermodynamic rela-
tions to write Eq. (16) in a more useful way in terms of free
energy per particle f(&,7),

1 <{;I;> 2€h(€,7).

Here the temperature 7 is kept constant. For é— —, we
know that the system is equivalent to noninteracting Bose
gas with mass 2m and density n/2. We denote its free energy
as Fy(7) and introduce fz(7)=Fg(7)/N, which is half of the
free energy per molecule. Correspondingly, we introduce the

I

il (22)

single-particle entropy sAr):—%,% and the single-particle
specific heat CB(T)=T%. Then we can integrate Eq. (22)
from —o to £ and find

flén)= fB(T)+26Ff h(¢',nd¢'. (23)

The entropy per particle s can be written as

PHYSICAL REVIEW A 79, 023601 (2009)

h T
s(r>=s3(r>—2f MET) o1

T (24)

Notice that at 7=0, if we assume that the ground state is not
macroscopically degenerate, then s=0, which suggests that

. 0h(&7)
lim

0 T

=0, V& (25)

This means that apart from a constant term (a function of &),
the expansion of #(&,7) must have the following form:

h(€ 1) =h(&)+A(7"+ -,

where A(&) is some well-behaved function of & The single-
particle specific heat can be directly obtained by using ¢

as as
=1/NT =7,

¢ e
() = calr) - J h;i Dag.

—o0

n>1, (26)

(27)

Before we conclude this subsection, we would like to de-
rive a simple relation between the chemical potential x and
the average single-particle energy € at zero temperature and
thus write down the zero-temperature chemical potential in
terms of #(£). Note that at T=7=0, we can write the single-
particle energy as €= egfx(&). Thus using the thermodynamic
relation P=—% and E=Ne, we find

=n2ﬁ=n25’[€Ff(§)]. (28)
on on

Using the relation n= 3k3,, we can make a change of variable
to kp and write Eq. (28) as p= 3nkF .- Now, using the ex-
pression €= egf(£) and the fact that f(g) only depends on the

combination é=—(kpa,)~', we obtain, p= ne+ naY; [35].
We consider the situation when the densny of the system is
fixed, and we write the above expression as e:%’z+%§g—g. At
T=0, we have the thermodynamic relation E=—5+ M, where

p is the pressure and n is the average density. We find

1076

5 3
Je=2u
2T e

(29)

The above expression is very general and works along the
whole BEC-BCS crossover provided that the density n is
kept constant. In the extreme BEC limit, the single particle
energy equals the chemical potential: e=u=-—

fies that this is satisfied by Eq. (29). In the BCS limit, the
first-order correction to the energy will be of order aj,
namely of order &', coming from Hartree-Fock corrections.
Since 5———5‘1 e —as5—>0 when a,—0, we thus re-
cover the usual relatlon between chemical potential u and
the average single-particle energy of the free Fermi gas €
=§,u,. At unitarity, £=0, we find again the free Fermi gas
result E=% M, if we assume that the energy is continuous at
unitarity.

Finally, using Eq. (16), we can write the zero-temperature
chemical potential in terms of i(&) as
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2 10 [~
m(é) = éF(l - §§h(§) - ?f h(f')d§'>- (30)
3

Setting £=0, we recover Eq. (18) since at unitarity u=(1

+B)€p.

C. rf-spectroscopy shift Sw

One of the early experiments that indicated the appear-
ance of a new low-temperature quantum state in ultracold
Fermi gases was the radio-frequency spectroscopic experi-
ment carried out by the Innsbruck group [36]. The experi-
ment works with the lowest two hyperfine-Zeeman states (|1)
and [2)) of °Li. A radio-frequency field is applied to drive
atoms from state |2) to |3). It is found that at high tempera-
ture, the frequency of the rf field coincides with the bare
atomic transition from |2) to |3), while at low temperature,
there is an up-shift in the rf frequency, which indicates that
the system is in a new quantum state. The interpretation of
the experiment is fairly complicated. On the one hand, the
experiment was not carried out in the linear-response regime,
so, strictly speaking, a simple-minded sum rule calculation is
not applicable; on the other hand, the quasiparticle tunneling
picture seems to obscure the fundamental consideration re-
garding the SU(2) (non)invariance of the interparticle inter-
action, which is of crucial importance in explaining the early
NMR data of *He [37]. These two pictures are discussed in
detail in a recent paper by Leskinen et al., to which we refer
for details [38]. It is also understood that the full understand-
ing of rf spectroscopy requires a proper treatment of the
final-state interactions [39-47]. Here we follow Ref. [46],
where a unified treatment is given for the rf spectroscopy
along the BEC-BCS crossover within the linear-response
theory. It has been shown there that the average shift of the 1f
spectroscopy is given by the following expression
[43,44,46], in the present notation:

o= w j g (7, = PR ) () (7))
2

_ G(H) +J(H)
- #

where Cg(as)zfg(r)b?]z(r) 2dr and the functions G(H) and
J(H) are given in Ref. [46], g() is the exchange interaction,
and N,=N/2 is the particle number in the hyperfine-Zeeman
state [2). Again C,(a,) is independent of temperature 7 and
we conclude that the average rf shift has the same tempera-
ture dependence as the interaction energy at arbitrary £ Note
that dw scales with kg at unitarity.

Cg(as)szh(é’ T)’ (31)

D. Closed-channel fraction

One of the key physical quantities in the BEC-BCS cross-
over using Feshbach resonance is the population in the
closed channel. This quantity has been experimentally deter-
mined using an optical molecular spectroscopic technique
[19]. The experiment uses °Li atoms in their lowest two hy-
perfine states |1) and |2), in which they interact primarily
through the electronic triplet potential. On the other hand, the
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associated closed-channel molecules induced by the Fesh-
bach resonance interact primarily through the much deeper
electronic singlet potential. In the experiment, a laser beam
induces an electric dipole transition between the closed-
channel molecular state (X ]2;, v=38) to another closed-
channel molecular state with v=68, A 12:. At low tempera-
ture, it is inferred from the loss signal that on the BCS side
of the resonance, there is a finite fraction of closed-channel
molecules that is not supported by the two-body physics.
Thus it is suggested that the many-body quantum state must
have nontrivial two-particle correlations like those in the
BCS state to account for the observed one-body decay in the
BCS side [19]. To address the closed-channel fraction theo-
retically [48-50], let us first identify the inter-channel cou-
pling W(7) from the bare interactions between the two atoms,
U(r) =f(F)+g(71)§1~§2. f(r) and g(r) are the direct and ex-
change interaction, respectively. We restrict ourselves to the
case in which there are only two channels involved, namely
an open channel with atoms in the lowest two hyperfine-
Zeeman states |1) and [2) and the corresponding closed chan-
nel with atoms in hyperfine-Zeeman states |1) and |4). Notice
that one of the hyperfine-Zeeman states is common to the
open and closed channels. We shall denote the interaction
potential in the open and closed channel by V,(r)
=(12|U|12) and V.(r)=(14|U|14), respectively. Now, the
inter-channel coupling can be written as

W(r) - 7y) = g(Fy — 1)(14(S; - §,[12), (32)

where |af) denotes a spin-singlet state |aB)=(|a)|B),
—|B8)1]a),)/\2. The Hamiltonian is given by

. h?
H= E f d;lﬂ;(;)(— %V2 - /u‘a+Ea) lzba(;)

1
>
2a,By5

X Uaﬁyﬁ(;l - ;2) wy(;2)¢6(;1) > (33)

dr\diy (7)) Wi(F)

where ., is the chemical potential of the & component and
Uaﬂyﬁ(;)=f(;)5a5567+g(;)<a|sl|6>'<B|SZ|7>' Ea is the en-
ergy of the hyperfine-Zeeman state |a). Note that to the ex-
tent that the particle number in any one hyperfine-Zeeman
level is conserved in the absence of the laser beam, that is, if
we neglect any decay of atoms from one hyperfine-Zeeman
state to another, we have only two independent chemical
potentials, u; and w,=puy, corresponding to the two sepa-
rately conserved quantities Ny=N/2 and N,+N,=N/2. To
address the population of the closed channel in a many-body
system, we look at the equation of motion for a product of
two Fermi operators, ,(ry,1)ig(ry.1),
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Mo+ Eq— 2_2 - Mgt Eﬁ) 7)) g(ry) + > Uopo (1 = 1) (1) Ys(r2)
m 75
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Note that since both f(r) and g(7) are short-range functions
of order ry, it is clear from Eq. (34) that the conversion from
an open-channel pair state to a closed-channel molecular
state occurs only at short distance, i.e., |F;—7,|~r. It fol-
lows then that the last two terms in Eq. (34) are of minor
importance as compared with the other terms since they in-
volve another coordinate 7 that should be close to 7| or 7,
and thus bring up extra factors of kpr(. They provide either
an effective background potential or introduce pair states
other than the ones under consideration (|12) and |14)),
which are relatively unimportant and thus not of concern
here. In the following, we shall neglect the last two terms in
Eq. (34). Now, taking Eq. (34) to act on the ground state or
thermal ensemble, we find the coupled equation of motion of
a state with two holes in it. Let us denote this state by
&,(r,,F,) and ¢.(r,,r,), where subscript o refers to a=1,
B=2 of the open channel and ¢ refers to a=1, =4 of the
closed channel. We assume that the rotational degrees of
freedom of the closed-channel molecules are not excited at
low temperature and remain in a relative s-wave state. In that
case, since W(7) is in fact isotropic in space, only the s-wave
components of ¢,(r;,r,) are important in discussing the
population of the closed-channel molecules. On the other
hand, only s-wave pair states in the open channel can be
converted by a short-range potential W(7) to closed-channel
molecules, as is clear from the structure of Eq. (35). By
performing a Fourier transform with respect to the center-of-

mass coordinate 2R=7,+7, and time, we find the following
coupled equation:

e L=
(w t - Ex - V0(7)> ®(r:K, )
m

= W(P) ¢.(F:K, ),

v? ~ -
<w+—+,u1+,u,4—E1}— 5c—€o—Vc(7))¢c(7;K,w)
m

= W(P) ¢, (7K, w).

Here —¢ is the energy of the molecular state in the closed
channel relative to its asymptotic energy E,+E, when the

(35)

two atoms are far away from each other, £ ,}:ﬁsz/ 4m is the
center-of-mass kinetic energy of a pair of atoms, and 5@
=E,—E,—¢, is the so-called bare detuning from the Fesh-
bach resonance. In the case of a broad Feshbach resonance, it

J AT Uy olPo = PV (PP Vol P ()

(34)

is much larger than the many-body energy scale, in particu-

lar, 50> €r. Even though the form of the coupled equation
(35) is the same as that for the two-body case, the many-
body physics does play an important role as it determines the
normalizations for the function ¢,(r,7,) and ¢.(r,7,). Let
us note one feature of Eq. (35) that is conceptually impor-
tant: Since the inter-channel coupling depends only on the

relative coordinate, the center-of-mass momentum K is a
good quantum number and we conclude that the pair distri-
butions in the open and closed channel are connected by Eq.
(35) due to the superposition nature of the open-channel
pairs and closed-channel molecules. It is thus in general not
permissible to assign independent momentum distributions
to the closed-channel molecules and open-channel pairs;
specifying either one of them suffices to fix the other through
Eq. (35). Also note that if we neglect, as we shall do later, the

relatively unimportant factor Eg as compared with SC, the
coupled equation (35) is identical for different K states. That

implies that, whatever the center-of-mass momentum X is for
the open-channel pair state, the inter-channel coupling al-
ways induces the same amount of closed-channel molecules

associated with it. The irrelevance of finite K states in dis-
cussing closed-channel molecule formation can again be un-
derstood as a result of its high-energy character, that is, the
process occurs only at short distance, of order r(, and there-
fore many-body physics is quite incapable of modifying it.

Let us then introduce the Green function for the closed-
channel equation,

(o4 i)
w+——=V.(r)|G(r,r")=8r-r"), (36)
mdr
where G(r,r') is given by
Gl =S X, (r)x,(r") _ Xo (M Xxo(r )’ 37)

. w-E, o+ €

where x(r) is the normalized eigenfunction in the closed
channel with energy —¢€,. Using Eq. (37) to integrate the
closed-channel equation, we find
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1

¢(r;K,0) = -
o+ p+ py—Eg— 6,

XJdV,Xz(V)Xo(r')W(V,)d’o(r'QIE,CU)-
(38)

Again, we see that since W(r') is short-ranged, the integra-
tion only picks up the short-range part of the pair wave func-
tion. An important question is the appropriate value for w. It
is clear that the state obtained by removing two particles in
states |1) and |2) does not in general correspond to the eigen-
state (or thermal equilibrium) for the N—2 particle system. It
is, however, clear that w will be centered around —(u; + i),
corresponding to the energy difference between the ground
states for the (N—2)- and N-particle state. The spread of w
will be in general smaller than the Fermi energy even at
resonance. In the case of a wide resonance, it is known that
55 is much larger than the many-body scale, so if we approxi-
mate the denominator in the above equation by 36 and make

a Fourier transform with respect to K, we find

bo(r,R) =— % f dr' s (Nxo(rYW(r) go(r' ). (39)

e

This implies that the number of molecules in the closed
channel N is given by

Ne= f drdR ¢,(r,R)* ¢,(r,R)

1)\2 ..
=<;) f dRdr' dr'K(r' ") ¢,(r' . R) ¢ (".R),
B

e

(40)

where K(r’' ,r”)=X0(r’)Xz(r”)W(r’)W(r”). It is clear that the
kernel K(r',r") is a short-range function in both r' and r”,
and that ¢,(r' ,I_é) d):(r”,ls) corresponds to the s-wave part of
the following density matrix: ((ﬂ'll'(l_é+ %) «p;(ﬁ— %)tﬁz(ﬁ
—%) A (IE +%)). Using the same decomposition as before, we
find

2
= (é) kpCilah(é,7), (41)

where we have used Eq. (9) and defined Cgla,)
=[dr'dr"x(r')*K(r' ,¥")x(r"). Noting that the dimension of
Cklay) is given by [EJ[L], we can define a length scale I, by

CK(as)
&

c

l.=

1
. =— f dr'dr'"x(r'*K(r" , /" x(r").  (42)
&
[, is entirely determined by the two-body physics. Note that
since W(r) in Eq. (32) has the factor (12|S,-S5,/14) and, as a
result, the quantity /. is magnetic-field-dependent, its depen-
dence can be calculated straightforwardly. We find
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1 ~
lc=L(H)§Jdr’dr”)?(r')*K(r’,r")j/(r"), (43)
where I?(r’,r”):Xo(r’))(:(r”)g(r’)g(ﬂ’) is magnetic-field-
independent and function L(H) is given by
(1-20°°8

LiH) = 4(1+ a1 + )

(44)

where the parameters a and 8 depend on magnetic field and
are given in Ref. [46]. Finally, we can rewrite the molecular
fraction in the closed channel as

fc= kFlch(g’ T)' (45)

At unitarity, f. scales with kg. It can be shown that Eq. (45)
is equivalent to that given in Ref. [51] [their Eq. (25)] by
using their definition of R, [their Eq. (26)].

In the following, we shall illustrate the above general con-
siderations in the “naive” BCS-ansatz, properly generalized
to include the closed-channel component. Note that one of
the spin states (|1)) is common to the open and closed chan-
nels,

IBCS) = 2 (g + v,;a;g]ai];z + w,;a,';lai,;4)|vac>, (46)

k
where ug, vg, and wj are the usual variational parameters,
satisfying |ug®+vi>+|wil*=1. aj(ii is the creation operator
for a particle in the hyperfine-Zeeman state |i) with momen-
tum k. The corresponding pair wave functions that are rel-
evant in Eq. (35) are Fi=uj and Fi=ujwj. Let us concen-

U]

trate only on the K=0 pair state in the system since it
corresponds to macroscopic occupation in the BCS state [cf.
also the discussion after Eq. (35)]. Denoting the Fourier
transform of F{ and Fj as F°(r) =Suwie™ and F(F)
=Supwie™” and setting w=—(u,+u,), we find that the
coupled Egs. (35) take the form

VZ
(— Vo(r7)>F"(7) = WOF (),

m

(%2 ~ o€~ VC(F))F”(F) = W(HF(7).

This coupled equation is exactly the same form as that in the
two-body case (see, for example, Ref. [7]). We can follow
the derivation there, or more straightforwardly we can re-
place ¢,(r,R) with Q~V2F°(r), where 2=!/2 accounts for the
center-of-mass motion of the pair and F°(r) is the radial part
of the pair wave function F°(7). The spatial dependence of
F°(7) is given, within the crossover model [46], by

mA 1-rla

0=

(47)

We find that the density of atoms in closed channel, n,, is
given by
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( - )2
ne=I{—7=—-1.
NAmh?

Using n:k;/3ﬂ2, we obtain the fraction of particles in the
closed channel f,,

Con16 T\e)

(48)

(49)

If we compare the above equation with Eq. (45), we find
h(é,7)=3m/16(A/ €r)?. Thus within the “naive” ansatz, the
fraction of particles in the closed channel is proportional to
A? and, moreover, at resonance, scales with kp. In the ex-
treme BEC limit, we know A=4e€;/\3mkpa, and thus

(50)

independent of many-body physics, as it should be intu-
itively.

Before ending this section, let us mention the work in the
literature on the problem of the closed-channel fraction. In
the work by Javanainen et al. [50], it is assumed that the
Feshbach-induced bosons in the closed channel are con-

densed in the K=0 state. This can be regarded as a limiting
case of the calculation by Chen er al. [48] in which Feshbach
molecules are included in a nonzero temperature generaliza-
tion of the conventional “naive” ansatz. The conclusions ob-
tained in [48] are in agreement with our general analysis. For
example, it is shown in Ref. [48] that the fraction of con-
densed bosons scales with kp at unitarity, and within their
approximation, the number of closed-channel molecules
(named Feshbach molecules in Ref. [48]) is proportional to
AfC [our A in Eq. (49) above], while the number of noncon-
densed molecules is proportional to Ai . [Eq. (9) in[48]]. A,
describes noncondensed Fermion pairs, which are of course
included in the general definition of the function h(&,7).
Thus, it is clear that the general structure of the conclusions
is the same in both approaches. However, as emphasized
before, as a result of the coupled nature of Eq. (35), the
momentum distribution of the open-channel pair states dic-
tates the momentum distribution of the closed-channel mol-
ecules (Feshbach molecules). While this feature is explicit at
the Hamiltonian level of the two-channel model, it is in gen-
eral not enforced in the actual calculations [see, for example,
Eq. (94) in Ref. [20]]. To illustrate the point, let us look at
the unitarity limit at 7=0, where we know that a fraction of
the Fermi pairs is not condensed; thus the induced closed-
channel molecules associated with them will have nonzero

momentum, far from being condensed in the K=0 state.

IV. CONCLUSIONS

By exploiting the diluteness of the ultracold Fermi gas,
we have shown that, in considering various physical quanti-
ties of the system, it is possible to lump all the many-body
dependence into a single universal function h(&,7). A par-
ticular physical quantity may be universal, irrespective of
microscopic details (e.g., the form of the interaction poten-
tial), in which case one should be able to express it entirely
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in terms of h(&,7), as in the case of the average single-
particle energy of the system, Eq. (17). Other physical quan-
tities are not universal and there are explicit dependences on
the interaction, other than that incorporated in the function
h(&, 7). However, those dependences can be dealt with using
only the two-body physics. In this case, it is possible to show
the universal temperature dependence of the physical quan-
tities. For convenience, let us summarize these two types of
behavior in the following:

(a) Universal dependence on £ and 7. It is understood that
universal here means that all the interaction and temperature
dependences are captured in one function, h(¢, 7). The pri-
mary example is the single-particle energy of the system, Eq.
(17). Physical quantities that can be directly derived from
energy will be in this category as well, for example the speed
of sound ¢ and the chemical potential u in Eq. (30).

(b) Universal temperature dependence. In this case, the
physical quantities will have identical temperature depen-
dence inherited from h(&, 7). Those physical quantities in-
clude the interaction energy of the system Eq. (12), the av-
erage radiofrequency spectroscopic shift, Eq. (31), and the
molecular fraction in the closed channel, Eq. (45).

In actual experiment, there is always an external confining
potential that renders the system inhomogeneous. The ques-
tion of universality is then more delicate. However, the ar-
gument given in Sec. II is still valid provided the scale over
which the confining potential varies is much larger than the
range of the potential. This is well satisfied in the experi-
ments. The universal function h(&(7),7) will depend on po-
sition 7 through local Fermi vector k(7). The temperature
dependence of the physical quantities listed in category (b)
above will still have universal temperature dependence even
in a trap.

Note added. Recently, we became aware of the work of
Werner et al. [51], who performed a similar analysis for the
closed-channel molecule fraction. Of particular interest is
their definition of a universal function that is identical to our
h(&,7); see their Eq. (14). As compared with the paper by
Werner et al., we have made an effort to connect different
physical quantities together and emphasized the universal
temperature dependences of the physical quantities. In addi-
tion, we have discussed in detail the physical origin of the
universal function. See, however, their paper for a discussion
of the tail of the momentum distribution (their Sec. III B).
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APPENDIX A: EXPANSION OF GROUND-STATE ENERGY
AROUND UNITARITY

In this appendix, we discuss how to establish the linear
dependence of the ground-state energy e(&) on & around uni-
tarity. Before we start with the many-body problem, it is
instructive to look at the two-body problem for guidance. For
more details, see Ref. [7].
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Let us consider two atoms of mass m, interacting via a
central potential V,(r) which can be tuned by a parameter \.
The wave function for the relative motion y,(r) satisfies the
following time-independent Schrédinger equation [12]:

h d
-5 a0+ () = Ex(r), (A1)
2m, dr
where m,=m/2 is the reduced mass. Note that the normal-
ization of y,(r) is arbitrary at the moment. Let us fix this by
requiring that in the region r> ry,

() =1- aL’ (A2)

where 1 is the range of the two-body potential V,(r). Con-
sider the critical potential Vi, for which a,=%, and denote
the corresponding radial wave function by x,. xo=1 for r
>r,. For zero-energy scattering, we have

h? d

———=xor)+V, (r r)=0. A3

2mrdr2X0( ) )\c( )Xo(7) (A3)
Now, multiplying Eq. (A1) by x, (setting E=0 on the right-
hand side as well for zero-energy scattering) and multiplying
Eq. (A3) by minus y,, we find, using Green’s theorem and
integrating up to r,

dxo(r dx\(r
(290, 22

"o

m )
== ﬁJ dr{V\(r) - Vxlr(r)]Xo(r)XA(V)- (A4)
0
Since both V,(r) and V)\C(r) are short-range functions, we can
safely replace y,(r) with x,(r) around resonance since they
are identical for r=<r,. Using the explicit form of x,(r) and
Xo(r), we find, for an infinitesimal change of A,

561;1:_22 fwdrm

|X0(r)|2) ON.  (AS)

A=\

Now, let us consider the many-body case. We shall be
interested in a system with N/2 spin-up atoms with coordi-
nate denoted by x;, and N/2 spin-down atoms with coordi-
nate denoted by y;, i=1,2,...,N/2. The interaction between
spin-up atom i and spin-down atom j takes the form

V(% - )71 ), (A6)

where \ is a tuning parameter as in the two-body case. It
determines the asymptotic behavior of the many-body wave
function in the range r0<r5a$,k;1. We denote the corre-
sponding  spatial many-body wave function as
W, (X;,X5,...,Y1,Y2,...). In general, one is not allowed to
write down a pure spatial wave function with spin part to-
tally decoupled from it. However, since we are only inter-
ested in the energetics of the system, for which the spin
index is only a spectator, we shall not write the spin compo-
nent explicitly. As in the two-body case, the many-body
wave function can be normalized in such a way that for rg
< |~fi_)-;j| Sawk;l’
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lim WX X0 ooV Y20 -on )

ro<liyj|=aky!

1o o
L (l_lxl y,l)q,,,
Va|x; =y ag

where W' is a function of variables other than x; and y;. We
say that the many-body system is on resonance if a,— . a,
should be regarded as a parameter of the theory that can be
tuned in the experiments by the external magnetic field. Nu-
merically, the value of a, as defined in Eq. (A7) must be
essentially equal to that in the two-body case in the same
magnetic field, as the discussions in Sec. II would imply.

To put our system in a finite volume such that the density
of particles n=N/{} is kept constant, we shall introduce the
characteristic function of the volume (2,

(A7)

xo®) =1 ifx € Q, otherwise zero. (A8)

Then we can enforce the condition of constant density
through an external one-body potential U(x),

U(x) = Uy[1 = xo(x)],

where Uy is a large constant representing the hard wall such
that the many-body wave function vanishes outside the re-
gion () and on the boundary of (), denoted by (),

\I,()a.)_;)L?Q =0.

W(x,y) is short-hand notation for W(xX;,X,,...,V|,Vs,...).
The time-independent Schrodinger equation takes the form

(A9)

(A10)

h? h?
2 (‘ _Vii— %Vy‘i"' U(x;) + U()’j))l[’(xj)

; 2m
1 e -
+ EE Vx(xi—yj)‘l’(x,f) =E\¥(x.y). (A11)
ij

In writing the above equation, we have neglected the inter-
action potential between parallel spins, corresponding to the
Fock energy in a many-body system. This is certainly negli-
gible as compared with the Hartree term between antiparallel
spins, which has been incorporated in the above expression.
We now follow the same recipe developed for the two-body
case. We write another equation corresponding to A=X\, i.e.,
corresponding to a,— % at resonance. Let us also denote the
corresponding energy by E, and the wave function by
W,(x,y). Then by multiplying each equation with ¥, or ¥,
respectively, and subtracting against each other, we find

Ey-Ey=2, . (A12)

25 .
J dxdy‘l’)\\lfo

where Wh(fl_);)j) = V}\(fl_)_;j) - V}\C(fi_ij)' We have used
Green’s theorem and the fact that the wave function vanishes
at the boundary of the volume (). In differential form, we
have
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A NCTES T
f Gy g g
dE, 1 » )
an 2%
" f dxdyW, ¥,

(A13)

Now, \ determines the scattering length ay(\) and thus if we
use é=—(kpa,)”", we find, by using Eq. (13),

(-7,
dxdy—L)‘(x J )|qf0|2
Py

dE(§)  dn k_FE
dé¢ ~ da'2 < .
g aé ,j fdxdy\l,)\\lfo

A%

2 | dxdy—*|w?
/R o\ 1
=k .

2m (9‘/)\ D) > >

dr |X0(r)| dxdyW\V,

(A14)

Notice the resemblance of Eq. (A14) to Eq. (16). In fact, we
have merely managed to express the function A(£) in terms
of the many-body wave function. We have replaced ¥, with
. . v, . .
W, in the numerator since —- is a short-range function. The
integral involving 2—‘:? in the numerator only picks up the
short-range contribution from the probability distribution
function [W(x,y)|%, and thus apart from a normalization con-

P o, WV, .
stant that is finite, it cancels the factor [§dr—>|x(r)|* in the
denominator. Thus, all the sensitive short-range dependence
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has disappeared in the above expression and we are left with
quantities that are independent of short-range complications.
Note now that the factor [dxdy¥, W, approaches a constant
as £€—0 since it is merely the normalization factor for the
wave function W,. This is why, from a many-body wave-
function point of view, the definition of the function i(&, 7) is
universal to the dilute Fermi gas system, irrespective of its
short-range potential. The complicated expression on the
right-hand side of Eq. (A14) reduces to a simple combination
of normalization constants and thus remains well-defined for
a,—». We have thus established the linear dependence of
the energy on & around resonance.

Finally, the extension of the above argument to finite tem-
perature is straightforward. In the case of thermal equilib-
rium, we consider instead a distribution of eigenstates |n)
with energy E,, each occurring with probability given by the
usual Boltzmann factor e~£/%87. One can repeat, word by
word, the above derivation, and thus we can conclude that at
finite temperature, the & dependence of energy away from
resonance is linear. Notice that we have to fix the relative
occupation of each single-particle state, which is equivalent
to fixing the entropy, in order for the argument to go through.
This is, of course, the usual adiabatic process. Here we also
assume that the temperature is quite low so that its effects on
the short-range wave function are irrelevant. The argument
can be extended also to a nonequilibrium situation in which
the probability of state |n) is given by p,, =p,=1. However,
it is practically useless since the characterization of the sys-
tem as “away from the resonance” is ambiguous and one is
not likely to obtain any useful conclusions from the argu-
ment.
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