366 research outputs found

    Work group inclusion : test of a scale and model

    Get PDF
    We develop a theoretically based 10-item measure of work group inclusion comprised of two components (belongingness and uniqueness) and use this measure to empirically test the nomological network of work group inclusion developed by Shore et al. In Phase 1, we use two samples of full-time employees to develop and refine items as well as establish content validity. In Phase 2, we demonstrate convergent, discriminant, and incremental validity with both conceptually related and unrelated constructs. In Phase 3, we use data from an additional sample of employees and supervisors to test criterion-related validity and mediation by examining the multilevel relationships between inclusion and important antecedents and outcomes. Across the three phases of our study, the results demonstrate support not only for the factor structure, reliability, and validity of our work group inclusion measure but also for a theoretical model in which the construct of inclusion has important implications for individuals and organizations

    Inclusive leadership : realizing positive outcomes through belongingness and being valued for uniqueness

    Get PDF
    We introduce a theoretically-grounded conceptualization of inclusive leadership and present a framework for understanding factors that contribute to and follow from inclusive leadership within work groups. We conceptualize inclusive leadership as a set of positive leader behaviors that facilitate group members perceiving belongingness in the work group while maintaining their uniqueness within the group as they fully contribute to group processes and outcomes. We propose that leader pro-diversity beliefs, humility, and cognitive complexity increase the propensity of inclusive leader behaviors. We identify five categories of inclusive leadership behaviors that facilitate group members' perceptions of inclusion, which in turn lead to member work group identification, psychological empowerment, and behavioral outcomes (creativity, job performance, and reduced turnover) in the pursuit of group goals. This framework provides theoretical grounding for the construct of inclusive leadership while advancing our understanding of how leaders can increase diverse work group effectiveness

    DESCRIPTIVE ANALYSIS OF THE SMALL RUMINANT MEAT OFFERING IN PUERTO RICO

    Get PDF
    DESCRIPTIVE ANALYSIS OF THE SMALL RUMINANT MEAT OFFERING IN PUERTO RIC

    Trajectory model simulations of ozone (O<sub>3</sub>) and carbon monoxide (CO) in the lower stratosphere

    Get PDF
    A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005–2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical lower stratosphere

    Delayed Decision-making in Real-time Beatbox Percussion Classification

    Get PDF
    This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance xx^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as xND11/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

    Get PDF
    Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapor (H<sub>2</sub>O) in the stratosphere, in which the tropical cold-point temperatures regulate the amount of H<sub>2</sub>O entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for understanding stratospheric H<sub>2</sub>O abundances. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective – analysis for Research and Applications), only provide temperatures with ~ 1.2 km vertical resolution in the TTL, which has been argued to miss finer vertical structure in the tropopause and therefore introduce uncertainties in our understanding of stratospheric H<sub>2</sub>O. In this paper, we quantify this uncertainty by comparing the Lagrangian trajectory prediction of H<sub>2</sub>O using MERRA temperatures on standard model levels (<i>traj.MER-T</i>) to those using GPS temperatures at finer vertical resolution (<i>traj.GPS-T</i>), and those using adjusted MERRA temperatures with finer vertical structures induced by waves (<i>traj.MER-Twave</i>). It turns out that by using temperatures with finer vertical structure in the tropopause, the trajectory model more realistically simulates the dehydration of air entering the stratosphere. But the effect on H<sub>2</sub>O abundances is relatively minor: compared with <i>traj.MER-T</i>, <i>traj.GPS-T</i> tends to dry air by ~ 0.1 ppmv, while <i>traj.MER-Twave</i> tends to dry air by 0.2–0.3 ppmv. Despite these differences in absolute values of predicted H<sub>2</sub>O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that a tropopause temperature with finer vertical structure has limited impact on predicted stratospheric H<sub>2</sub>O

    The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

    Get PDF
    Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapor (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate the amount of H2O entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for understanding stratospheric H2O abundances. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective – analysis for Research and Applications), only provide temperatures with ~ 1.2 km vertical resolution in the TTL, which has been argued to miss finer vertical structure in the tropopause and therefore introduce uncertainties in our understanding of stratospheric H2O. In this paper, we quantify this uncertainty by comparing the Lagrangian trajectory prediction of H2O using MERRA temperatures on standard model levels (traj.MER-T) to those using GPS temperatures at finer vertical resolution (traj.GPS-T), and those using adjusted MERRA temperatures with finer vertical structures induced by waves (traj.MER-Twave). It turns out that by using temperatures with finer vertical structure in the tropopause, the trajectory model more realistically simulates the dehydration of air entering the stratosphere. But the effect on H2O abundances is relatively minor: compared with traj.MER-T, traj.GPS-T tends to dry air by ~ 0.1 ppmv, while traj.MER-Twave tends to dry air by 0.2–0.3 ppmv. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that a tropopause temperature with finer vertical structure has limited impact on predicted stratospheric H2O
    corecore