711 research outputs found

    Essential oils as multi-target compounds for novel food safety strategies

    Get PDF
    This research work has been developed in the context of the potencial applications of essential oils as multi-target compounds for novel food safety strategies, such as active packaging technologies. Essential oils are aromatic oils derived from plants and usually extracted by hydrodistillation when intended to be used in food. There is an increasing interest in the antimicrobial properties of essential oils due to the possibility of using them to replace \u2018synthetic\u2019 preservatives in food or, in general, to reduce viable numbers of pathogens along the food chain

    Volcanogenic particulates and gases from Etna volcano (Italy)

    Get PDF
    Volcanic emissions represent one of the most relevant natural sources of trace elements to the troposphere. Due to their potential toxicity they may have important environmental impacts from the local to the global scale and they can severely affect the atmospheric and terrestrial environment also at timescales ranging from a few to million years. Etna volcano is known as one of the largest global contributors of magmatic gases (CO2, SO2, and halogens) and particulate matter, including some toxic trace elements. The aim of this study was to characterize the chemical composition and the mineralogical features of the volcanogenic aerosol passively emitted from Mt. Etna. Nine samples were collected by using the filtration technique at different sites on summer 2010 and 2011. Chemical and mineralogical analyses allowed to discriminate two main constituents: the first is mainly referable to the silicate component in the volcanic plume, like lithic and juvenile fragments, crystals (e.g., plagioclases, pyroxenes, oxides) and shards of volcanic glass; the second one is linked to the soluble components like sulfosalts or halide minerals (sulfates, chlorides and fluorides). These investigations are especially important in the study area because the summit of Mt. Etna is yearly visited by nearly one hundred thousand tourists that are exposed to potentially harmful compounds

    Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms

    Get PDF
    The aim of this work was to explore the use of several Mediterranean fruit juices as fermentable substrates to develop new non-dairy fermented beverages. Microbiological, chemical and sensory features of kefir-like beverages obtained after the fermentation of juices extracted from fruits cultivated in Sicily (southern Italy) with water kefir microorganisms were investigated. Results indicated that both lactic acid bacteria and yeasts were able to develop in the fruit juices tested, but the highest levels were registered with prickly pear fruit juice. All fruit juices underwent a lactic fermentation, since a lactic acid content was detected in the resulting kefir-like beverages. Except kiwifruit and quince based kefirs, total titratable acidity increased for the other experimental products. A general decrease of the soluble solid content and an increase of the number of volatile organic compounds (VOCs) was also observed after fermentation. As expected, the fermentation increased the concentration of alcohols. The main fermentation in KLBs resulted to be yeast-based. Kiwifruit and pomegranate juices possessed a high antioxidant activity. Esters compounds were present at higher amount after the fermentation, especially in grape, pomegranate and quince. Aldehydes showed an opposite trend. Changes in colour attributes were registered as noticeable at human perception scale. The overall quality evaluation indicated that, among the Mediterranean fruit juices tested, apple and grape beverages were the products mostly appreciated by the tasters. Therefore, these findings support the possibility to develop fruit-based kefirlike beverages with high added value and functional properties

    Volcanogenic particulates and gases from Etna volcano (Italy)

    Get PDF
    Volcanic emissions represent one of the most relevant natural sources of trace elements to the troposphere. Due to their potential toxicity they may have important environmental impacts from the local to the global scale and they can severely affect the atmospheric and terrestrial environment also at timescales ranging from a few to million years. Etna volcano is known as one of the largest global contributors of magmatic gases (CO2, SO2, and halogens) and particulate matter, including some toxic trace elements. The aim of this study was to characterize the chemical composition and the mineralogical features of the volcanogenic aerosol passively emitted from Mt. Etna. Nine samples were collected by using the filtration technique at different sites on summer 2010 and 2011. Chemical and mineralogical analyses allowed to discriminate two main constituents: the first is mainly referable to the silicate component in the volcanic plume, like lithic and juvenile fragments, crystals (e.g., plagioclases, pyroxenes, oxides) and shards of volcanic glass; the second one is linked to the soluble components like sulfosalts or halide minerals (sulfates, chlorides and fluorides). These investigations are especially important in the study area because the summit of Mt. Etna is yearly visited by nearly one hundred thousand tourists that are exposed to potentially harmful compounds

    Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses

    Get PDF
    The biofilms of 12 wooden vats used for the production of the traditional stretched cheeses Caciocavallo Palermitano and PDO Vastedda della valle del Belìce were investigated. Salmonella spp. and Listeria monocytogenes were never detected. Total coliforms were at low numbers with Escherichia coli found only in three vats. Coagulase-positive staphylococci (CPS) were below the enumeration limit, whereas lactic acid bacteria (LAB) dominated the surfaces of all vats. In general, the dominance was showed by coccus LAB. Enterococci were estimated at high numbers, but usually between 1 and 2 Log cycles lower than other LAB. LAB populations were investigated at species and strain level and for their technological properties relevant in cheese production. Eighty-five strains were analysed by a polyphasic genetic approach and allotted into 16 species within the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus. Enterococcus faecium was found in all wooden vats and the species most frequently isolated were Enterococcus faecalis, Lactococcus lactis, Leuconostoc mesenteroides, Pediococcus acidilactici and Streptococcus thermophilus. The study of the quantitative data on acidification rate, autolysis kinetics, diacetyl production, antibacterial compound generation and proteolysis by cluster and principal component analysis led to the identification of some strains with promising dairy characteristics. Interestingly, a consistent percentage of LAB was bacteriocin-like inhibitory substances (BLIS) producer. Thus, the microbial biofilms of the wooden vats analysed in this study might contribute actively to the stability of the final cheeses

    ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat

    Get PDF
    The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPγS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat

    Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia

    Get PDF
    We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with the more negative compositions observed in N2-dominated samples. The carbon-helium relationship indicates that these negative δ13C compositions could be due to isotopic fractionation processes during CO2 dissolution into groundwater. In contrast, CO2-rich samples reflect mixing between crustal and mantle-derived CO2. Our estimated mantle-derived He flux (9.0 × 109 atoms m−2 s−1) is up to 2 orders of magnitude higher than the typical fluxes in stable continental areas, suggesting a structural/tectonic setting favoring the migration of deep-mantle fluids through the crust

    Respiratory Syncytial Virus: New Challenges for Molecular Epidemiology Surveillance and Vaccination Strategy in Patients with ILI/SARI.

    Get PDF
    Abstract: Several respiratory pathogens are responsible for influenza-like illness (ILI) and severe respiratory infections (SARI), among which human respiratory syncytial virus (hRSV) represents one of the most common aetiologies. We analysed the hRSV prevalence among subjects with ILI or SARI during the five influenza seasons before the emergence of SARS-CoV-2 epidemic in Sicily (Italy). Respiratory specimens from ILI outpatients and SARI inpatients were collected in the framework of the Italian Network for the Influenza Surveillance and molecularly tested for hRSV-A and hRSV-B. Overall, 8.1% of patients resulted positive for hRSV. Prevalence peaked in the age-groups <5 years old (range: 17.6–19.1%) and ≥50 years old (range: 4.8–5.1%). While the two subgroups co-circulated throughout the study period, hRSV-B was slightly predominant over hRSV-A, except for the season 2019–2020 when hRSV-A strongly prevailed (82.9%). In the community setting, the distribution of hRSV subgroups was balanced (47.8% vs. 49.7% for hRSV-A and hRSV-B, respectively), while most infections identified in the hospital setting were caused by hRSV-B (69.5%); also, this latter one was more represented among hRSV cases with underlying diseases, as well as among those who developed a respiratory complication. The molecular surveillance of hRSV infections may provide a valuable insight into the epidemiological features of ILI/SARI. Our findings add new evidence to the existing knowledge on viral aetiology of ILI and SARI in support of public health strategies and may help to define high-risk categories that could benefit from currently available and future vaccines

    SUSCEPTIBILITY OF WINTER TICK LARVAE AND EGGS TO ENTOMOPATHOGENIC FUNGI - BEAUVERIA BASSIANA, BEAUVERIA CALEDONICA, METARHIZIUM ANISOPLIAE, AND SCOPULARIOPSIS BREVICAULIS

    Get PDF
    An isolate of the soil fungus Scopulariopsis brevicaulis was identified from the surface of female winter ticks (Dermacentor albipictus) collected from recently dead moose (Alces alces) calves in New Hampshire in the northeastern United States. It was the sole isolate, and it matched with 98% nucITS similarity (molecular systematics Blast match) to S. brevicaulis species from soil and other tick species. Inoculation of tick larvae and eggs with 108 spores/mL + 0.05% Tween (aqueous inoculum) resulted in mortality, reduced survival time, and recovery of S. brevicaulis from within tick tissues. Rapid water loss and death from dehydration were the pathogenic consequences of the fungal infection. Three entomopathogenic fungal isolates from laboratory culture (Beauveria bassiana, B. caledonica,and Metarhizium anisopliae) inoculated concurrently at the same dose, were slightly less pathogenic to eggs than larvae of winter ticks. We conclude that S. brevicaulis imposes a limitation on the free-living stages of the winter tick population in specific environmental conditions, but commercial fungal treatments as used in local situations to control ticks, are impractical as a means of controlling winter tick density across moose habitats
    corecore