10,103 research outputs found
Discretizing Gravity in Warped Spacetime
We investigate the discretized version of the compact Randall-Sundrum model.
By studying the mass eigenstates of the lattice theory, we demonstrate that for
warped space, unlike for flat space, the strong coupling scale does not depend
on the IR scale and lattice size. However, strong coupling does prevent us from
taking the continuum limit of the lattice theory. Nonetheless, the lattice
theory works in the manifestly holographic regime and successfully reproduces
the most significant features of the warped theory. It is even in some respects
better than the KK theory, which must be carefully regulated to obtain the
correct physical results. Because it is easier to construct lattice theories
than to find exact solutions to GR, we expect lattice gravity to be a useful
tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde
Comparing the Profitability of Beef Production Enterprises in North Dakota
Agricultural Finance, Production Economics,
Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer
A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction
1-loop matching and NNLL resummation for all partonic 2 to 2 processes in QCD
The Wilson Coefficients for all 4-parton operators which arise in matching
QCD to Soft-Collinear Effective Theory (SCET) are computed at 1-loop. Any dijet
observable calculated in SCET beyond leading order will require these results.
The Wilson coefficients are separated by spin and color, although most
applications will involve only the spin-averaged hard functions. The anomalous
dimensions for the Wilson coefficients are given to 2-loop order, and the
renormalization group equations are solved explicitly. This will allow for
analytical resummation of dijet observables to next-to-next-to-leading
logarithmic accuracy. For each channel, there is a natural basis in which the
evolution is diagonal in color space. The same basis also diagonalizes the
color evolution for the soft function. Even though soft functions required for
SCET calculations are observable dependent, it is shown that their
renormalization group evolution is almost completely determined by a universal
structure. With these results, it will be possible to calculate hadronic event
shapes or other dijet observables to next-to-leading order with
next-to-next-to-leading log resummation.Comment: 28 pages, 5 tables; v2: typo corrected in Eq. (56
Single-Calf Heifer System Profitability Compared to Other North Dakota Beef Production Systems
Production Economics, Productivity Analysis,
Localization of Bulk Form Fields on Dilatonic Domain Walls
We study the localization properties of bulk form potentials on dilatonic
domain walls. We find that bulk form potentials of any ranks can be localized
as form potentials of the same ranks or one lower ranks, for any values of the
dilaton coupling parameter. For large enough values of the dilaton coupling
parameter, bulk form potentials of any ranks can be localized as form
potentials of both the same ranks and one lower ranks.Comment: 9 pages, LaTeX, reference adde
Information flow through a model of the C. elegans klinotaxis circuit
Understanding how information about external stimuli is transformed into
behavior is one of the central goals of neuroscience. Here we characterize the
information flow through a complete sensorimotor circuit: from stimulus, to
sensory neurons, to interneurons, to motor neurons, to muscles, to motion.
Specifically, we apply a recently developed framework for quantifying
information flow to a previously published ensemble of models of salt
klinotaxis in the nematode worm C. elegans. The models are grounded in the
neuroanatomy and currently known neurophysiology of the worm. The unknown model
parameters were optimized to reproduce the worm's behavior. Information flow
analysis reveals several key principles underlying how the models operate: (1)
Interneuron class AIY is responsible for integrating information about positive
and negative changes in concentration, and exhibits a strong left/right
information asymmetry. (2) Gap junctions play a crucial role in the transfer of
information responsible for the information symmetry observed in interneuron
class AIZ. (3) Neck motor neuron class SMB implements an information gating
mechanism that underlies the circuit's state-dependent response. (4) The neck
carries non-uniform distribution about changes in concentration. Thus, not all
directions of movement are equally informative. Each of these findings
corresponds to an experimental prediction that could be tested in the worm to
greatly refine our understanding of the neural circuit underlying klinotaxis.
Information flow analysis also allows us to explore how information flow
relates to underlying electrophysiology. Despite large variations in the neural
parameters of individual circuits, the overall information flow architecture
circuit is remarkably consistent across the ensemble, suggesting that
information flow analysis captures general principles of operation for the
klinotaxis circuit
Winter and summer simulations with the GLAS climate model
The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations
Current and future graphics requirements for LaRC and proposed future graphics system
The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed
Global Hot Gas in and around the Galaxy
The hot interstellar medium traces the stellar feedback and its role in
regulating the eco-system of the Galaxy. I review recent progress in
understanding the medium, based largely on X-ray absorption line spectroscopy,
complemented by X-ray emission and far-UV OVI absorption measurements. These
observations enable us for the first time to characterize the global spatial,
thermal, chemical, and kinematic properties of the medium. The results are
generally consistent with what have been inferred from X-ray imaging of nearby
galaxies similar to the Galaxy. It is clear that diffuse soft X-ray
emitting/absorbing gas with a characteristic temperature of K
resides primarily in and around the Galactic disk and bulge. In the solar
neighborhood, for example, this gas has a characteristic vertical scale height
of kpc. This conclusion does not exclude the presence of a
larger-scale, probably much hotter, and lower density circum-Galactic hot
medium, which is required to explain observations of various high-velocity
clouds. This hot medium may be a natural product of the stellar feedback in the
context of the galaxy formation and evolution.Comment: 11 pages, invited talk in the workshop "The Local Bubble and Beyond
II
- …