10,103 research outputs found

    Discretizing Gravity in Warped Spacetime

    Full text link
    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde

    Comparing the Profitability of Beef Production Enterprises in North Dakota

    Get PDF
    Agricultural Finance, Production Economics,

    Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer

    Get PDF
    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction

    1-loop matching and NNLL resummation for all partonic 2 to 2 processes in QCD

    Get PDF
    The Wilson Coefficients for all 4-parton operators which arise in matching QCD to Soft-Collinear Effective Theory (SCET) are computed at 1-loop. Any dijet observable calculated in SCET beyond leading order will require these results. The Wilson coefficients are separated by spin and color, although most applications will involve only the spin-averaged hard functions. The anomalous dimensions for the Wilson coefficients are given to 2-loop order, and the renormalization group equations are solved explicitly. This will allow for analytical resummation of dijet observables to next-to-next-to-leading logarithmic accuracy. For each channel, there is a natural basis in which the evolution is diagonal in color space. The same basis also diagonalizes the color evolution for the soft function. Even though soft functions required for SCET calculations are observable dependent, it is shown that their renormalization group evolution is almost completely determined by a universal structure. With these results, it will be possible to calculate hadronic event shapes or other dijet observables to next-to-leading order with next-to-next-to-leading log resummation.Comment: 28 pages, 5 tables; v2: typo corrected in Eq. (56

    Localization of Bulk Form Fields on Dilatonic Domain Walls

    Get PDF
    We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks.Comment: 9 pages, LaTeX, reference adde

    Information flow through a model of the C. elegans klinotaxis circuit

    Full text link
    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm C. elegans. The models are grounded in the neuroanatomy and currently known neurophysiology of the worm. The unknown model parameters were optimized to reproduce the worm's behavior. Information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries non-uniform distribution about changes in concentration. Thus, not all directions of movement are equally informative. Each of these findings corresponds to an experimental prediction that could be tested in the worm to greatly refine our understanding of the neural circuit underlying klinotaxis. Information flow analysis also allows us to explore how information flow relates to underlying electrophysiology. Despite large variations in the neural parameters of individual circuits, the overall information flow architecture circuit is remarkably consistent across the ensemble, suggesting that information flow analysis captures general principles of operation for the klinotaxis circuit

    Winter and summer simulations with the GLAS climate model

    Get PDF
    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations

    Current and future graphics requirements for LaRC and proposed future graphics system

    Get PDF
    The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed

    Global Hot Gas in and around the Galaxy

    Get PDF
    The hot interstellar medium traces the stellar feedback and its role in regulating the eco-system of the Galaxy. I review recent progress in understanding the medium, based largely on X-ray absorption line spectroscopy, complemented by X-ray emission and far-UV OVI absorption measurements. These observations enable us for the first time to characterize the global spatial, thermal, chemical, and kinematic properties of the medium. The results are generally consistent with what have been inferred from X-ray imaging of nearby galaxies similar to the Galaxy. It is clear that diffuse soft X-ray emitting/absorbing gas with a characteristic temperature of ∼106\sim 10^6 K resides primarily in and around the Galactic disk and bulge. In the solar neighborhood, for example, this gas has a characteristic vertical scale height of ∼1\sim 1 kpc. This conclusion does not exclude the presence of a larger-scale, probably much hotter, and lower density circum-Galactic hot medium, which is required to explain observations of various high-velocity clouds. This hot medium may be a natural product of the stellar feedback in the context of the galaxy formation and evolution.Comment: 11 pages, invited talk in the workshop "The Local Bubble and Beyond II
    • …
    corecore