126 research outputs found

    Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating

    Get PDF
    It is widely thought that continental chemical weathering provides the key feedback that prevents large fluctuations in atmospheric CO2, and hence surface temperature, on geological time scales. However, low-temperature alteration of the upper oceanic crust in off-axis hydrothermal systems provides an alternative feedback mechanism. Testing the latter hypothesis requires understanding the timing of carbonate mineral formation within the oceanic crust. Here we report the first radiometric age determinations for calcite formed in the upper oceanic crust in eight locations globally via in-situ U-Pb laser ablation–inductively coupled plasma–mass spectrometry analysis. Carbonate formation occurs soon after crustal accretion, indicating that changes in global environmental conditions will be recorded in changing alteration characteristics of the upper oceanic crust. This adds support to the interpretation that large differences between the hydrothermal carbonate content of late Mesozoic and late Cenozoic oceanic crust record changes in global environmental conditions. In turn, this supports a model in which alteration of the upper oceanic crust in off-axis hydrothermal systems plays an important role in controlling ocean chemistry and the long-term carbon cycle

    Border of Spacetime

    Full text link
    It is still uncertain whether the cosmic censorship conjecture is true or not. To get a new insight into this issue, we propose the concept of the border of spacetime as a generalization of the spacetime singularity and discuss its visibility. The visible border, corresponding to the naked singularity, is not only relevant to mathematical completeness of general relativity but also a window into new physics in strongly curved spacetimes, which is in principle observable.Comment: 4 pages, 1 figure, accepted for publication in Physical Review D, typos correcte

    Galactic cold dark matter as a Bose-Einstein condensate of WISPs

    Full text link
    We propose here the dark matter content of galaxies as a cold bosonic fluid composed of Weakly Interacting Slim Particles (WISPs), represented by spin-0 axion-like particles and spin-1 hidden bosons, thermalized in the Bose-Einstein condensation state and bounded by their self-gravitational potential. We analyze two zero-momentum configurations: the polar phases in which spin alignment of two neighbouring particles is anti-parallel and the ferromagnetic phases in which every particle spin is aligned in the same direction. Using the mean field approximation we derive the Gross-Pitaevskii equations for both cases, and, supposing the dark matter to be a polytropic fluid, we describe the particles density profile as Thomas-Fermi distributions characterized by the halo radii and in terms of the scattering lengths and mass of each particle. By comparing this model with data obtained from 42 spiral galaxies and 19 Low Surface Brightness (LSB) galaxies, we constrain the dark matter particle mass to the range 10−6−10−4eV10^{-6}-10^{-4} eV and we find the lower bound for the scattering length to be of the order 10−14fm10^{-14} fm.Comment: 13 pages; 6 figures; references added; v.3: typo corrected in the abstract, published in JCA

    The 1.23 Ga Fjellhovdane rhyolite, GrĂžssĂŠ-Totak; a new age within the Telemark supracrustals, southern Norway

    Get PDF
    The GrÞssÊ-Totak supracrustal belt is part of the several-kilometre thick Telemark supracrustal sequences that are exposed in southern Norway. Deposition of the Telemark supracrustals spans the period between Telemarkian continental growth at ~1.52-1.48 Ga and Sveconorwegian orogenesis associated with continental collision at ~1.1-0.9 Ga. The timing of deposition is largely constrained by U-Pb geochronology of detrital zircons in sedimentary units, and igneous zircons within felsic volcanics. A younger Supergroup that has been referred to as the Sveconorwegian Supergroup comprises depositional ages younger than 1.16 Ga; units of the GrÞssae-Totak belt have been mapped as part of this Supergroup. This study presents a new U-Pb age of 1233 ± 29 Ma for the Fjellhovdane rhyolite, one of the lowermost units within the GrÞssÊ-Totak belt; this age suggests that at least the lower part of this sequence is not part of the Sveconorwegian Supergroup, but formed in an earlier volcano-sedimentary basin that is correlative in age to the SÊsvatn-Valldal and Setesdal supracrustal belts that occur to the west and south respectively. The geochemistry of the Fjellhovdane rhyolite is compatible with crustal melting of previously-formed supra-subduction rocks, as has been advocated for the SÊsvatn-Valldal rhyolites

    The Collapse of Large Extra Dimensions

    Get PDF
    In models of spacetime that are the product of a four-dimensional spacetime with an ``extra'' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided.Comment: Uses revtex

    Transformation of jaw muscle satellite cells to cardiomyocytes

    Get PDF
    In the embryo a population of progenitor cells known as the second heart field forms not just parts of the heart but also the jaw muscles of the head. Here we show that it is possible to take skeletal muscle satellite cells from jaw muscles of the adult mouse and to direct their differentiation to become heart muscle cells (cardiomyocytes). This is done by exposing the cells to extracellular factors similar to those which heart progenitors would experience during normal embryonic development. By contrast, cardiac differentiation does not occur at all from satellite cells isolated from trunk and limb muscles, which originate from the somites of the embryo. The cardiomyocytes arising from jaw muscle satellite cells express a range of specific marker proteins, beat spontaneously, display long action potentials with appropriate responses to nifedipine, norepinephrine and carbachol, and show synchronized calcium transients. Our results show the existence of a persistent cardiac developmental competence in satellite cells of the adult jaw muscles, associated with their origin from the second heart field of the embryo, and suggest a possible method of obtaining cardiomyocytes from individual patients without the need for a heart biopsy

    Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth

    Get PDF
    We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and 208Pb/206Pb, 207Pb/206Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5–8 years, living in NE England. By integrating the isotope data with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2–3 years for molars, first 1–2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (0.4 ”gPb/g) with 208Pb/206Pb (mean ±2σ: 2.145–2.117) 208Pb/206Pb (mean ±2σ: 0.898–0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1–2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot study confirms that laser ablation Pb isotope analysis of deciduous teeth, when carried out in conjunction with histological analysis, permits a reconstruction of the timing, duration and source of exposure to Pb during early childhood. With further development, this approach has the potential to study larger cohorts and appraise environments where the levels of exposure to Pb are much higher

    Small localized black holes in a braneworld: Formulation and numerical method

    Get PDF
    No realistic black holes localized on a 3-brane in the Randall-Sundrum infinite braneworld have been found so far. The problem of finding a static black hole solution is reduced to a boundary value problem. We solve it by means of a numerical method, and show numerical examples of a localized black hole whose horizon radius is small compared to the bulk curvature scale. The sequence of small localized black holes exhibits a smooth transition from a five-dimensional Schwarzschild black hole, which is a solution in the limit of small horizon radius. The localized black hole tends to flatten as its horizon radius increases. However, it becomes difficult to find black hole solutions as its horizon radius increases.Comment: RevTeX, 13 pages, 6 figures, references corrected, typos corrected; to appear in Phys.Rev.

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n≄4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio
    • 

    corecore