1 Early hydrothermal carbon uptake by the upper oceanic

- 2 crust: Insight from *in situ* U-Pb dating
- 3 Laurence A. Coogan^{1*}, Randall R. Parrish^{2,3}, and Nick M.W. Roberts³
- 4 ¹School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia
- 5 V8P 5C2, Canada
- 6 ²Department of Geology, University of Leicester and British Geological Survey,
- 7 Keyworth, Notts, NG12 5GG, UK
- 8 ³NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Notts,
- 9 NG12 5GG, UK
- 10 *E-mail: lacoogan@uvic.ca; Tel: (1) 250 472 4018; Fax: (1) 250 721 6200

11 ABSTRACT

12 It is widely thought that continental chemical weathering provides the key 13 feedback that prevents large fluctuations in atmospheric CO₂, and hence surface 14 temperature, on geological timescales. However, low temperature alteration of the upper 15 oceanic crust in off-axis hydrothermal systems provides an alternative feedback 16 mechanism. Testing the latter hypothesis requires understanding the timing of carbonate 17 mineral formation within the oceanic crust. Here we report the first radiometric age 18 determinations for calcite formed in the upper oceanic crust in eight locations globally 19 via in situ U-Pb LA-ICP-MS analysis. Carbonate formation occurs soon after crustal 20 accretion indicating that changes in global environmental conditions will be recorded in 21 changing alteration characteristics of the upper oceanic crust. This adds support to the 22 interpretation that large differences between the hydrothermal carbonate content of Late

23	Mesozoic and Late Cenozoic oceanic crust record changes in global environmental
24	conditions. In turn, this supports a model in which alteration of the upper oceanic crust in
25	off-axis hydrothermal systems plays an important role in controlling ocean chemistry and
26	the long-term carbon cycle.
27	INTRODUCTION
28	Earth's long-term carbon cycle requires a negative feedback mechanism such that
29	increasing atmospheric CO ₂ leads to increasing CO ₂ drawdown into rocks (Berner and
30	Caldeira, 1997). The standard model has this feedback principally driven by continental
31	chemical weathering, largely through increased temperature and precipitation leading to
32	increased riverine alkalinity fluxes to the ocean and hence greater carbon draw down
33	(Berner, 2004). An alternative model suggests that the feedback is principally driven by
34	increased alteration of the upper oceanic crust (lavas) in low-temperature (10's of
35	Celcius), off-axis, hydrothermal systems (Brady and Gislason, 1997). This alternative
36	model has found recent support based on: (i) the much higher C-content of ocean crust
37	altered in the greenhouse climate of the Late Mesozoic than the icehouse climate of the
38	Late Cenozoic (Gillis and Coogan, 2011); (ii) modeling of the seawater Sr-isotope curve
39	that suggests that much of the rise in 87 Sr/ 86 Sr in the Late Cenozoic is due to decreasing
40	ocean temperature leading to less unradiogenic Sr being leached from the upper oceanic
41	crust (Coogan and Dosso, 2015); and (iii) modeling of the variability of seawater Mg-
42	isotopes that suggests that the Late Cenozoic increase in Mg/Ca is due to cooling
43	seawater leading to a reduced Mg sink into marine clays (Higgins and Schrag, 2015).
44	A key to testing the oceanic crust feedback model is understanding the duration
45	over which a section of oceanic crust continues to chemically interact with the ocean. In

46	detail this must depend on many local factors such as crustal permeability structure,
47	sedimentation rate and seafloor topography. However, the global average duration of
48	large-scale chemical exchange is the important factor in global geochemical cycles. For
49	example, if alteration occurs soon after crustal accretion and then largely stops, the age of
50	the crust can be used to estimate the global environmental conditions during alteration
51	and hence test predictions of this model. In contrast, if the oceanic crust continues to
52	chemically interact with the ocean over its entire lifetime, with little change in the rate of
53	chemical exchange, then environmental conditions over the entire lifetime of piece of
54	crust would have to be integrated into a model of the style of crustal alteration.
55	While previous studies have addressed the question of the timing of crustal
56	alteration (see below) here we present a novel approach to radiometrically date secondary
57	carbonate minerals for the first time. Carbonate (largely calcite except in very young
58	oceanic crust which contains abundant aragonite) is a key phase because: (i) its age
59	records the time of alkalinity generating reactions within the crust (Coogan and Gillis,
60	2013); (ii) based on textural relationships (i.e. relative ages) void filling carbonate has
61	been proposed to record the final stage of upper crust alteration in any given sample
62	(Staudigel et al., 1981; Alt and Honnorez, 1984; Gillis and Robinson, 1990); and (iii) its
63	composition has been used to track changes in ocean chemistry (Coggon et al., 2010;
64	Rausch et al., 2013) which is dependent on the assumption that carbonate forms soon
65	after crustal accretion.
66	Sample Suite
67	Twolve complex were calcuted from eight different Deen See Drilling Preiset

67 Twelve samples were selected from eight different Deep Sea Drilling Project
68 (DSDP) sites and two from the Troodos ophiolite to represent a range of crustal ages (81–

69	DOI:10.1130/G37212.1 148 Myr) and ocean basins (Table 1 and Supplementary Information ¹). Only relatively
70	old locations were selected with the aim of determining how long after crustal accretion
71	carbonate continues to form for. The samples are all from veins or, in one case, a feature
72	that could be a vein or a vug, and are from the upper 100 m of the lavas. Sample sites
73	were selected based on previous work having shown that alteration occurred at typical
74	low temperatures; this is confirmed by O-isotope data that indicate formation
75	temperatures between 9 and 23 $^{\circ}$ C similar to Cretaceous bottom water (Table 1). The
76	rationale for this was that this would lead to the largest probability that the carbonates
77	grew from typical seawater-like fluids, with high U and low Pb, giving the greatest
78	possibility of carbonate materials with high U/Pb. Of the fourteen samples, three have
79	extremely low U contents and low U/Pb making them impossible to date. These samples
80	are not discussed further although the reader should keep in mind it is possible that the
81	conclusions drawn below are only relevant to the 80% of carbonates dated.
~	

82 ANA

ANALYTICAL TECHNIQUES

83 Chips of optically clean carbonate a few millimeters in size were mounted in 84 epoxy for analysis. Measurements were analogous to LA-ICP-MS methods used for zircon U-Pb dating by Mottram et al. (2014) and carbonate U-Pb dating by Li et al. 85 (2014) with normalization for U-Pb and 207 Pb/ 206 Pb using the 254 Myr old WC-1 calcite 86 87 and NIST 614 glass, respectively. Multiple spots on a single grain were analyzed and the data regressed on Tera-Wasserburg plots using Isoplot to determine the sample age (Fig. 88 1). An in-house method was used for correction of inherent variability in the proportion 89 of common lead in the WC-1 calcite. The Supplemental material¹ contains more detail on 90 91 methods and full data tables. Uranium contents of samples were measured by

92	normalizing the signal against that of the WC-1 calcite with an assumed ~5 ppm U
93	content, and are therefore approximate. Uncertainties of ages reflect all analytical
94	uncertainties and the uncertainty of the external standard used for normalization. Hand-
95	picked optically clean carbonate from the same samples was analyzed for O-isotopic
96	composition following the methods described in Gillis and Coogan (2011; Table 1).
97	RESULTS
98	Out of the eleven samples dated, the five most precise U-Pb ages (Fig. 1; Table 1)
99	are for samples from DSDP Sites 417D, 418A and 543A in the western Atlantic and Site
100	163 in the equatorial central Pacific. These samples have 2σ precisions of better than ± 5
101	Myr (ages between 82 and 128 Myr). The three samples from Sites 417D and 418A,
102	drilled within 10 km of one another, contain the highest U contents of any studied here
103	with maximum U contents ranging from 0.5 to 10 ppm (Supplementary data). The
104	samples from Sites 543A and 163 contain much lower U contents (maximum U contents
105	of 80 and 120 ppb respectively) but still have some areas with relative high U/Pb
106	allowing reasonably high precision age determinations. The data for the two samples with
107	the highest U contents show some scatter (MSWD 4.8 and 5.3; Table 1), suggesting that
108	other factors (multiple periods of growth, variable common lead isotope composition)
109	could be important; the uncertainties take account of the scatter in regressions but their
110	absolute uncertainties need to be used with some caution. Three samples have
111	intermediate age uncertainties of \pm 5–10 Myr (Fig. 1). These samples have maximum U
112	contents ranging from 50 to 80 ppb but Pb contents generally <5 ppb allowing reasonably
113	precise ages. The three samples with the largest uncertainties ($\pm 10-20$ Myr) are from
114	DSDP Site 595B (two samples) and the Troodos ophiolite; these samples contain <40

115	ppb U. For all of these samples there are no analyses with low common lead and hence
116	there is a large extrapolation from the array of data to the concordia age intercept and the
117	uncertainties quoted should be considered as minimum values.
118	The new carbonate formation ages (Fig. 1; Table 1) provide the first direct
119	determination of whether carbonate formation occurs soon after crustal accretion or
120	throughout the life of a section of oceanic crust – both of which have been previously
121	suggested (Staudigel and Hart, 1985; Alt and Teagle, 1999; Gillis and Coogan, 2011;
122	Coogan and Dosso, 2015). Despite the analytical challenges in dating these materials it is
123	clear that most carbonate forms soon after crustal accretion (Fig. 2); this interpretation is
124	consistent with other preliminary data, collected in the same way, recently reported by
125	Harris et al. (2014). Notably, none of the carbonate ages are >20 Myr younger than the
126	crust despite all the study areas being in >80 Myr old crust. While fluid and heat fluxes
127	are not expected to directly match chemical fluxes, it is notable that >80% of the off-axis
128	hydrothermal heat flux is removed within 20 Myr of crustal accretion.
129	DISCUSSION
130	Conditions in the Aquifer During Carbonate Growth
130 131	
	Conditions in the Aquifer During Carbonate Growth

- 134 contents of the carbonates (Fig. 1; Supplementary material¹) suggests that the
- 135 concentrations of U and Pb in the aquifer fluid, and/or environmental conditions (pH,
- 136 redox, T), varied during carbonate growth. Formation of secondary minerals at low
- 137 temperatures adds U to the crust (e.g., Staudigel et al., 1995) and will lead to decreasing

138	U contents of the aquifer fluid as fluid-rock reaction progresses, at least partial explaining
139	the observed variability in U/Pb. This fluid-rock reaction occurs despite the low
140	carbonate formation temperatures (9–23 °C; Table 1). Such modification of the fluid
141	composition, on timescales shorter than that of the growth of a single carbonate vein,
142	needs careful consideration when interpreting past compositions of seawater from the
143	compositions of carbonate minerals precipitated within the oceanic crust (e.g., Coggon et
144	al., 2010; Rausch et al., 2013).
145	Modern deep seawater contains very little Pb (~2 ppt; Bruland et al., 2014) and
146	has a high U/Pb (~1000) and fluids entering the crustal aquifer have probably had
147	similarly high U/Pb throughout the Phanerozoic. The low Pb content of seawater, and its
148	short residence time, means that the Pb-isotopic composition of seawater can vary on
149	short timescales (kyr). Thus, variations in the Pb content, and isotopic composition, of the
150	aquifer fluid during the growth of a carbonate vein may be caused by either: (i) changing
151	seawater Pb content/isotopic composition, and/or (ii) fluid-lava or fluid-sediment
152	reactions; i.e., no additional source of Pb is required by the Pb-isotope variability
153	although it cannot be ruled out.
154	The excess scatter of the data about a linear correlation (i.e., MSWD >2.0 at 2σ)
155	between 238 U/ 206 Pb and 207 Pb/ 206 Pb in some samples (Fig. 1) most likely reflects either: (i)
156	varying Pb-isotopic composition of the fluid that the carbonate grew from, (ii) protracted
157	carbonate growth and/or (iii) analytical factors difficult to correct for in low-signal
158	analyses. Protracted growth of carbonates, perhaps over millions of years, may be a
159	natural consequence of the large fluid fluxes required to supply sufficient C to the crust to
160	form the mass of carbonate observed in some drill cores (Coogan and Gillis, 2013).

161 Low-Temperature Alteration Occurs Early

162	It is clear from the new data reported here that most carbonate precipitation within
163	the upper oceanic crust occurs within the first 20 Myr after crustal formation (>80%;
164	Figure 2, 3). Our samples come from a wide range of locations and from crust with ages
165	between 80 and 148 Myr but none of the carbonates ages are >16 Myr younger than the
166	crustal age. The only previous approach to determining the timing of carbonate formation
167	in the ocean crust compares the Sr-isotopic compositions of carbonates with the seawater
168	Sr-isotope curve. This approach gives a non-unique result both because the seawater
169	curve shows fluctuations in 87 Sr/ 86 Sr, and because basalt dissolution lowers the 87 Sr/ 86 Sr
170	of crustal fluids. Early qualitative approaches concluded that carbonates were precipitated
171	within 10–15 Myr of crustal accretion assuming no basaltic Sr in the fluid (Staudigel and
172	Hart, 1985). More recent quantitative models show that the data can be explained with an
173	exponentially decreasing rate of carbonate precipitation with 85% of carbonate
174	precipitated within <20 Myr of crustal accretion (Gillis and Coogan, 2011; Coogan and
175	Dosso, 2015). The good agreement between the model ages and the direct age
176	determinations presented here (Fig. 3) suggest that the assumptions inherent in the Sr-
177	isotope model ages are reasonable.
178	It is useful to compare the U-Pb age distribution of carbonates with previous
179	radiometric age determinations for other low temperature alteration minerals formed in
180	the upper ocean crust. The most robust data sets come from K-Ar and Rb-Sr dating of
181	celadonite with just a few alteration age determinations from Rb-Sr isochron ages that
182	include clays and zeolites. Existing K-Ar ages of alteration of upper ocean crust come
183	almost entirely from celadonites in the Troodos ophiolite (54 samples from Gallahan and

184	DOI:10.1130/G37212.1 Duncan, 1994, and 4 from Staudigel et al., 1986). Comparison of these K-Ar ages to Rb-
185	Sr ages of 18 of the same celadonites suggests that they may have suffered some Ar-loss,
186	with Rb-Sr dates generally older (by a maximum of 14 Myr and an average of 5 Myr;
187	Booij et al., 1995). Celadonite formation as a function of time after crustal accretion
188	follows a similar pattern to carbonate formation although perhaps offset toward forming
189	slightly later (Fig. 3); this probably simply reflects different sample suites rather than a
190	real difference in the timing of carbonate and celadonite formation. Likewise, the limited
191	existing isochron age determinations of ocean crust alteration suggest this occurs soon
192	after crustal accretion (e.g., Richardson et al., 1980; Staudigel et al., 1986). Thus it seems
193	clear that, in general, the vast majority of the low temperature alteration of the upper
194	oceanic crust occurs within 20 Myr of crustal accretion (Fig. 3).
195	Several studies have suggested that carbonates are the last phases to form during
196	off-axis alteration of the upper oceanic crust (Staudigel et al., 1981; Alt and Honnorez,
197	1984; Gillis and Robinson, 1990). This is difficult to reconcile with the need for
198	alkalinity generating fluid-rock reaction to drive carbonate precipitation because these
199	must be accompanied by the formation of secondary silicates. The new age data suggest
200	carbonates and secondary silicates form over the same time interval (largely in the first
201	20 Myr after crustal accretion) resolving this paradox.
202	Implications for the Regulation of Ocean Chemistry
203	The relatively rapid alteration of new upper oceanic crust (Fig. 2, 3) has important

The relatively rapid alteration of new upper oceanic crust (Fig. 2, 3) has important implications for testing whether low-temperature alteration of the oceanic crust plays an important role in the feedback mechanisms that regulate ocean chemistry and the longterm carbon cycle. If this model is correct then, on a timescale of 10–20 million years

207	(i.e. the timescale of the majority of chemical exchange), there should be a correlation
208	between the composition of altered oceanic crust and the global environmental
209	conditions. The higher C content of Cretaceous than Cenozoic altered upper oceanic crust
210	supports a model of increased alkalinity production during periods of globally warm
211	conditions (Gillis and Coogan, 2011). This model also makes predictions for the average
212	change in Sr and Mg isotopic composition of upper ocean crust of different ages (Coogan
213	and Dosso, 2015; Higgins and Schrag, 2015), as well as other element and isotope
214	systems. However, we caution that local crustal hydrological conditions will have to be
215	considered to ensure a signal relevant to global fluxes is extracted from such data.
216	ACKNOWLEDGMENTS
217	Reviews by Hubert Staudigel and John Higgins helped improve the manuscript.
218	Kathy Gillis provided some of the samples analyzed here and critical comments. We
219	thank T. Rasbury for the WC-1 calcite.
220	REFERENCES CITED
221	Alt, J.C., and Honnorez, J., 1984, Alteration of the upper oceanic crust, DSDP Site 417:
222	mineralogy and chemistry: Contributions to Mineralogy and Petrology, v. 87,
223	p. 149–169, doi:10.1007/BF00376221.
224	Alt, J.C., and Teagle, D.A.H., 1999, The uptake of carbon during alteration of ocean
225	crust: Geochimica et Cosmochimica Acta, v. 63, p. 1527–1535, doi:10.1016/S0016-
226	7037(99)00123-4.
227	Berner, R.A., 2004, The Phanerozoic carbon cycle: Oxford, New York, Oxford

University Press.

- 229 Berner, R.A., and Caldeira, K., 1997, The need for mass balance and feedback in the
- 230 geochemical carbon cycle: Geology, v. 25, p. 955–956, doi:10.1130/0091-
- 231 7613(1997)025<0955:TNFMBA>2.3.CO;2.
- 232 Booij, E., Gallahan, W.E., and Staudigel, H., 1995, Ion-exchange experiments and Rb/Sr
- 233 dating on celadonites from the Troodos ophiolite, Cyprus: Chemical Geology, v.
- 234 126, p. 155–167, doi: http://dx.doi.org/10.1016/0009-2541(95)00116-1.
- 235 Brady, P.V., and Gislason, S.R., 1997, Seafloor weathering controls on atmospheric CO₂
- and global climate: Geochimica et Cosmochimica Acta, v. 61, p. 965–973,
- doi:10.1016/S0016-7037(96)00385-7.
- 238 Bruland, K.W., Middag, R., and Lohan, M.C., 2014, Controls of Trace Metals in
- 239 Seawater, *in* Turekian, H.D., and Holland H.K., eds., Treatise on Geochemistry (2nd
- 240 edition): Oxford, Elsevier, p. 19–51, doi:10.1016/B978-0-08-095975-7.00602-1.
- 241 Coggon, R.M., Teagle, D.A.H., Smith-Duque, C.E., Alt, J.C., and Cooper, M.J., 2010,
- 242 Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank
- 243 Calcium Carbonate Veins: Science, v. 327, p. 1114–1117,
- doi:10.1126/science.1182252.
- 245 Coogan, L.A., and Dosso, S.E., 2015, Alteration of ocean crust provides a strong
- temperature dependent feedback on the geological carbon cycle and is a primary
- 247 driver of the Sr-isotopic composition of seawater: Earth and Planetary Science
- 248 Letters, v. 415, p. 38–46, doi:10.1016/j.epsl.2015.01.027.
- 249 Coogan, L.A., and Gillis, K.M., 2013, Evidence that low-temperature oceanic
- 250 hydrothermal systems play an important role in the silicate-carbonate weathering

- 251 cycle and long-term climate regulation: Geochemistry Geophysics Geosystems,
- 252 v. 14, p. 1771–1786, doi:10.1002/ggge.20113.
- 253 Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-
- 254 water isotopic temperature scale: Geological Society of America Bulletin, v. 64, p.

255 1315–1325, doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2.

- 256 Gallahan, W.E., and Duncan, R.A., 1994, Spatial and temporal variability in
- 257 crystallization of celadonites within the Troodos ophiolite, Cyprus: Implications for
- low-temperature alteration of the oceanic crust: Journal of Geophysical Research,
- 259 v. 99, p. 3147–3161, doi:10.1029/93JB02221.
- 260 Gillis, K.M., and Coogan, L.A., 2011, Secular variation in carbon uptake into the ocean
- crust: Earth and Planetary Science Letters, v. 302, p. 385–392,
- 262 doi:10.1016/j.epsl.2010.12.030.
- 263 Gillis, K.M., and Robinson, P.T., 1990, Patterns and processes of alteration in the lavas
- and dykes of the Troodos Ophiolite, Cyprus: Journal of Geophysical Research, v. 95,
- 265 p. 21,523–21,548, doi:10.1029/JB095iB13p21523.
- 266 Harris, M., Coggon, R.M., Teagle, D.A.H., Roberts, N.M.W., and Parrish, R.R., 2014,
- 267 Laser ablation MC-ICP-MS U/Pb geochronology of ocean basement calcium
- 268 carbonate veins: Abstract V31B–4740 presented at 2014 Fall Meeting, AGU, San
- 269 Francisco, California, 15–19 December.
- 270 Higgins, J.A., and Schrag, D.P., 2015, The Mg isotopic composition of Cenozoic
- 271 seawater evidence for a link between Mg-clays, seawater Mg/Ca, and climate:
- Earth and Planetary Science Letters, v. 416, p. 73–81,
- doi:10.1016/j.epsl.2015.01.003.

274	Li, Q., Parrish, R.R., Horstwood, M.S.A., and McArthur, J.M., 2014, U-Pb dating of
275	cements in Mesozoic ammonites: Chemical Geology, v. 376, p. 76-83,
276	doi:10.1016/j.chemgeo.2014.03.020 (erratum available at
277	http://dx.doi.org/10.1016/j.chemgeo.2014.07.005).
278	Mottram, C.M., Argles, T.W., Harris, N.B.W., Parrish, R.R., Horstwood, M.S.A.,
279	Warren, C.J., and Gupta, S., 2014, Tectonic interleaving along the Main Central
280	Thrust, Sikkim Himalaya: Journal of the Geological Society, v. 171, p. 255–268,
281	doi:10.1144/jgs2013-064.
282	Rausch, S., Boehm, F., Bach, W., Kluegel, A., and Eisenhauer, A., 2013, Calcium
283	carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the
284	past 30 million years: Earth and Planetary Science Letters, v. 362, p. 215-224,
285	doi:10.1016/j.epsl.2012.12.005.
286	Richardson, S.H., Hart, S.R., and Staudigel, H., 1980, Vein mineral ages of old oceanic
287	crust: Journal of Geophysical Research, v. 85, p. 7195–7200,
288	doi:10.1029/JB085iB12p07195.
289	Staudigel, H., and Hart, S.R., 1985, Dating of ocean crust hydrothermal alteration:
290	Strontium isotope ratios from Hole 504B carbonates and reinterpretation of Sr
291	Isotope data from Deep Sea Drilling Project Sites 105, 332, 417, and 418: in
292	Anderson, R.N., Honnorez, J., and Becker, K., eds., Initial Reports of the Deep Sea
293	Drilling Project, Washington, DC., US Government Printing Office, vol. 83, p. 297-
294	303.

- 295 Staudigel, H., Hart, S.R., and Richardson, S.H., 1981, Alteration of the Oceanic-Crust -
- 296 Processes and Timing: Earth and Planetary Science Letters, v. 52, p. 311–327,
- 297 doi:10.1016/0012-821X(81)90186-2.
- 298 Staudigel, H., Gillis, K., and Duncan, R., 1986, K/Ar and Rb/Sr ages of celadonites from
- 299 the Troodos ophiolite, Cyprus: Geology, v. 14, p. 72–75, doi:10.1130/0091-
- 300 7613(1986)14<72:AASAOC>2.0.CO;2.
- 301 Staudigel, H., Davies, G.R., Hart, S.R., Marchant, K.M., and Smith, B.M., 1995, Large
- 302 scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP
- 303 sites417/418: Earth and Planetary Science Letters, v. 130, p. 169–185,
- 304 doi:10.1016/0012-821X(94)00263-X.
- 305
- 306 FIGURE CAPTIONS
- 307
- 308 Figure 1. Tera-Wasserburg concordia plots showing ²³⁸U/²⁰⁶Pb versus ²⁰⁷Pb/²⁰⁶Pb (age
- 309 and uncertainty are show in the title). The samples are ordered such that the more precise
- 310 ages are in the upper row and the least precise ages in the lower row.
- 311

Figure 2. Comparison of the measured carbonated age and the estimated age of the crust the carbonate came from. Considering the errors associated with both ages, the carbonate and crustal ages are virtually identical (gray symbols are samples shown in the lower row in Fig. 1, with large extrapolations to the age intercept). The inset shows the same but with the axes starting at zero, the time of sampling, showing more clearly that although the carbonates could, theoretically, have formed at any time after crustal accretion (i.e.,

318	vertically down from the 1:1 line in the gray polygon) they actually formed very soon
319	after crustal accretion.
320	
321	Figure 3. Comparison of the cumulative fraction of secondary minerals formed by low
322	temperature alteration of the upper oceanic crust as a function of time after crustal
323	accretion based on carbonate U-Pb ages (this study), celadonite K-Ar ages (Gallahan and
324	Duncan, 1994; Staudigel et al., 1986), celadonite Rb-Sr ages (Booij et al., 1995) and
325	carbonate Sr-isotopic composition modeling (Coogan and Dosso, 2015). The probability
326	distribution for each age determination was summed across all samples, accounting for
327	the individual age uncertainties, and the positive portion of this used to calculate the
328	cumulative frequency. In cases where the measured age distribution includes time before
329	crustal accretion these were normalized out of the probability distribution; this is only of
330	any significance for the U-Pb carbonate ages.
331	
332	¹ GSA Data Repository item 2015xxx, [this provides further background on the sample
333	sites and analytical techniques as well as all the full dataset], is available online at
334	www.geosociety.org/pubs/ft2009.htm, or on request from editing@geosociety.org or
335	Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
336 337 338 339 340 341 342 343	

Page 15 of 18

344 345

346

347

348

349

350

351

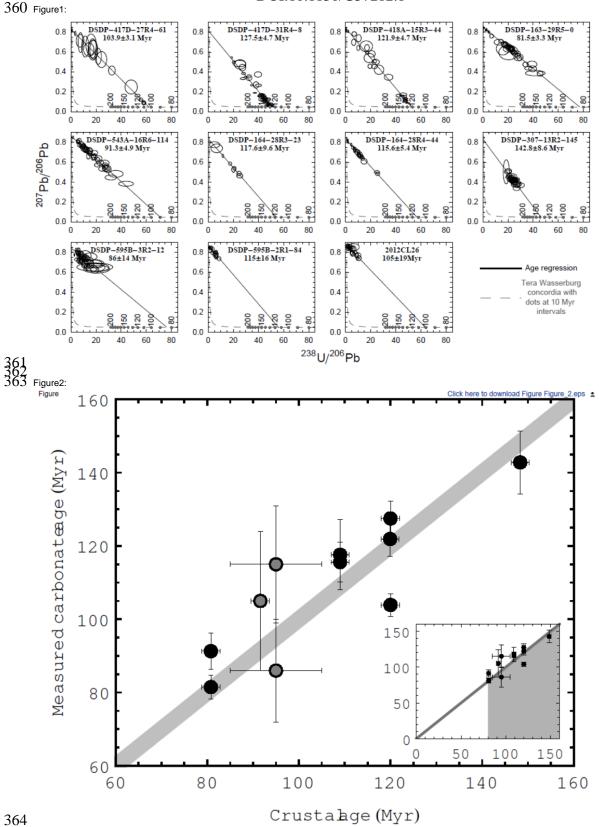
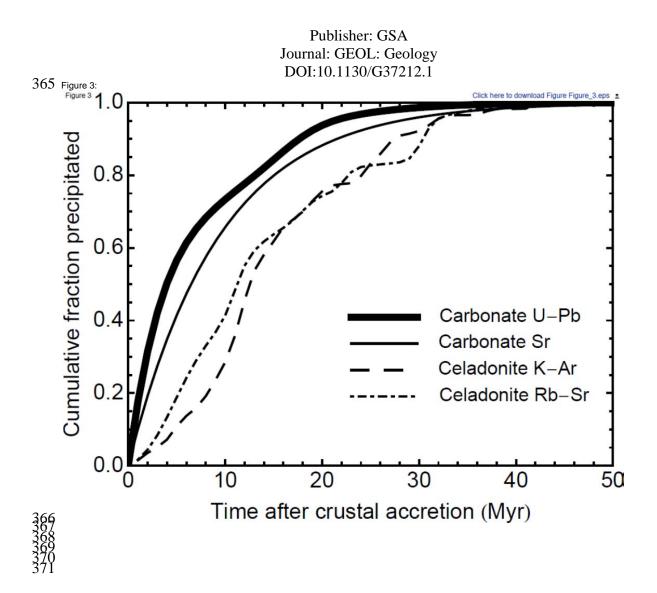

352 353

TABLE 1: CARBONATE COMPOSITIONS AND AGES


Sample	Texture	Crustal age (Myr)	Ave U (ppb)	Ave Pb (ppb)	Age	MSWD	²⁰⁷ Pb/ ²⁰⁶ Pb _(i)	δ ¹³ C (VPDB) ^b	δ ¹⁸ Ο (SMOW) ^b	Formation temp. (°C)
595B-2R1-84-95*	vein	95	13	3.5	115 ± 16	1.5	0.87 ± 0.01	2.6	30.5	14.0
595B-3R2-12-18*	vein	95	19	2.1	86 ± 14	6.6	0.85 ± 0.02	2.4	30.2	15.0
543-16R6-114.5-118*	vug/vein	80.8	50	3.7	91.3 ± 4.9	1.5	0.87 ± 0.01	2.5	30.9	12.5
543-16R6-114.5-118D	vug/vein	80.8						3.0	30.9	12.3
163–29R5–0	vein	80.8	91	9.1	81.5 ± 3.3	1.15	0.85 ± 0.01	2.9	31.9	8.7
164–28R3–23	vein	109	32	1.8	117.6 ± 9.6	0.42	0.83 ± 0.03	2.7	29.9	16.6
164–28R4–44	vein	109	33	4.9	115.6 ± 5.4	1.07	0.84 ± 0.01	1.7	28.5	22.4
417D-27R4–61	vein	120	124	3.6	103.9 ± 3.1	0.31	0.83 ± 0.01	1.8	30.2	15.4
417D-31R4-8	vein	120	2457	49	127.5 ± 4.7	5.3	0.86 ± 0.05	1.6	28.4	22.9
418A-15R3–144	vein	119.9	534	18	121.9 ± 4.7	4.8	0.85 ± 0.03	2.5	29.1	19.8
307 13R2 145	vein	148.3	63	2.4	142.8 ± 8.6	0.9	0.83 ± 0.03	1.1	29.4	18.4
2012CL26	vein	91.6	19	4.4	105 ± 19	1.7	0.89 ± 0.02	1.5	31.9	8.5
2012CL26D	vein	91.6						1.5	31.9	8.5

Note: We arbitrarily assign a ± 2 Myr uncertainty to all crustal ages except DSDP Site 595 for which the uncertainty is clearly larger and we assign ± 10 Myr (Supplementary material). D - duplicate analysis. Formation temperatures are calculated assuming a fluid δ^{18} O of -1 per mil and using the thermometer of Epstein et al. (1953)

i—intercept *O and C isotopes data from Gillis and Coogan (2011).

Page 17 of 18

