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ABSTRACT 11 

It is widely thought that continental chemical weathering provides the key 12 

feedback that prevents large fluctuations in atmospheric CO2, and hence surface 13 

temperature, on geological timescales. However, low temperature alteration of the upper 14 

oceanic crust in off-axis hydrothermal systems provides an alternative feedback 15 

mechanism. Testing the latter hypothesis requires understanding the timing of carbonate 16 

mineral formation within the oceanic crust. Here we report the first radiometric age 17 

determinations for calcite formed in the upper oceanic crust in eight locations globally 18 

via in situ U-Pb LA-ICP-MS analysis. Carbonate formation occurs soon after crustal 19 

accretion indicating that changes in global environmental conditions will be recorded in 20 

changing alteration characteristics of the upper oceanic crust. This adds support to the 21 

interpretation that large differences between the hydrothermal carbonate content of Late 22 
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Mesozoic and Late Cenozoic oceanic crust record changes in global environmental 23 

conditions. In turn, this supports a model in which alteration of the upper oceanic crust in 24 

off-axis hydrothermal systems plays an important role in controlling ocean chemistry and 25 

the long-term carbon cycle. 26 

INTRODUCTION 27 

Earth’s long-term carbon cycle requires a negative feedback mechanism such that 28 

increasing atmospheric CO2 leads to increasing CO2 drawdown into rocks (Berner and 29 

Caldeira, 1997). The standard model has this feedback principally driven by continental 30 

chemical weathering, largely through increased temperature and precipitation leading to 31 

increased riverine alkalinity fluxes to the ocean and hence greater carbon draw down 32 

(Berner, 2004). An alternative model suggests that the feedback is principally driven by 33 

increased alteration of the upper oceanic crust (lavas) in low-temperature (10’s of 34 

Celcius), off-axis, hydrothermal systems (Brady and Gislason, 1997). This alternative 35 

model has found recent support based on: (i) the much higher C-content of ocean crust 36 

altered in the greenhouse climate of the Late Mesozoic than the icehouse climate of the 37 

Late Cenozoic (Gillis and Coogan, 2011); (ii) modeling of the seawater Sr-isotope curve 38 

that suggests that much of the rise in 87Sr/86Sr in the Late Cenozoic is due to decreasing 39 

ocean temperature leading to less unradiogenic Sr being leached from the upper oceanic 40 

crust (Coogan and Dosso, 2015); and (iii) modeling of the variability of seawater Mg-41 

isotopes that suggests that the Late Cenozoic increase in Mg/Ca is due to cooling 42 

seawater leading to a reduced Mg sink into marine clays (Higgins and Schrag, 2015). 43 

A key to testing the oceanic crust feedback model is understanding the duration 44 

over which a section of oceanic crust continues to chemically interact with the ocean. In 45 
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detail this must depend on many local factors such as crustal permeability structure, 46 

sedimentation rate and seafloor topography. However, the global average duration of 47 

large-scale chemical exchange is the important factor in global geochemical cycles. For 48 

example, if alteration occurs soon after crustal accretion and then largely stops, the age of 49 

the crust can be used to estimate the global environmental conditions during alteration 50 

and hence test predictions of this model. In contrast, if the oceanic crust continues to 51 

chemically interact with the ocean over its entire lifetime, with little change in the rate of 52 

chemical exchange, then environmental conditions over the entire lifetime of piece of 53 

crust would have to be integrated into a model of the style of crustal alteration. 54 

While previous studies have addressed the question of the timing of crustal 55 

alteration (see below) here we present a novel approach to radiometrically date secondary 56 

carbonate minerals for the first time. Carbonate (largely calcite except in very young 57 

oceanic crust which contains abundant aragonite) is a key phase because: (i) its age 58 

records the time of alkalinity generating reactions within the crust (Coogan and Gillis, 59 

2013); (ii) based on textural relationships (i.e. relative ages) void filling carbonate has 60 

been proposed to record the final stage of upper crust alteration in any given sample  61 

(Staudigel et al., 1981; Alt and Honnorez, 1984; Gillis and Robinson, 1990); and (iii) its 62 

composition has been used to track changes in ocean chemistry (Coggon et al., 2010; 63 

Rausch et al., 2013) which is dependent on the assumption that carbonate forms soon 64 

after crustal accretion. 65 

Sample Suite 66 

Twelve samples were selected from eight different Deep Sea Drilling Project 67 

(DSDP) sites and two from the Troodos ophiolite to represent a range of crustal ages (81–68 
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148 Myr) and ocean basins (Table 1 and Supplementary Information1). Only relatively 69 

old locations were selected with the aim of determining how long after crustal accretion 70 

carbonate continues to form for. The samples are all from veins or, in one case, a feature 71 

that could be a vein or a vug, and are from the upper 100 m of the lavas. Sample sites 72 

were selected based on previous work having shown that alteration occurred at typical 73 

low temperatures; this is confirmed by O-isotope data that indicate formation 74 

temperatures between 9 and 23 °C similar to Cretaceous bottom water (Table 1). The 75 

rationale for this was that this would lead to the largest probability that the carbonates 76 

grew from typical seawater-like fluids, with high U and low Pb, giving the greatest 77 

possibility of carbonate materials with high U/Pb. Of the fourteen samples, three have 78 

extremely low U contents and low U/Pb making them impossible to date. These samples 79 

are not discussed further although the reader should keep in mind it is possible that the 80 

conclusions drawn below are only relevant to the 80% of carbonates dated. 81 

ANALYTICAL TECHNIQUES 82 

Chips of optically clean carbonate a few millimeters in size were mounted in 83 

epoxy for analysis. Measurements were analogous to LA-ICP-MS methods used for 84 

zircon U-Pb dating by Mottram et al. (2014) and carbonate U-Pb dating by Li et al. 85 

(2014) with normalization for U-Pb and 207Pb/206Pb using the 254 Myr old WC-1 calcite 86 

and NIST 614 glass, respectively. Multiple spots on a single grain were analyzed and the 87 

data regressed on Tera-Wasserburg plots using Isoplot to determine the sample age (Fig. 88 

1). An in-house method was used for correction of inherent variability in the proportion 89 

of common lead in the WC-1 calcite. The Supplemental material1 contains more detail on 90 

methods and full data tables. Uranium contents of samples were measured by 91 
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normalizing the signal against that of the WC-1 calcite with an assumed ~5 ppm U 92 

content, and are therefore approximate. Uncertainties of ages reflect all analytical 93 

uncertainties and the uncertainty of the external standard used for normalization. Hand-94 

picked optically clean carbonate from the same samples was analyzed for O-isotopic 95 

composition following the methods described in Gillis and Coogan (2011; Table 1). 96 

RESULTS 97 

Out of the eleven samples dated, the five most precise U-Pb ages (Fig. 1; Table 1) 98 

are for samples from DSDP Sites 417D, 418A and 543A in the western Atlantic and Site 99 

163 in the equatorial central Pacific. These samples have 2 precisions of better than ± 5 100 

Myr (ages between 82 and 128 Myr). The three samples from Sites 417D and 418A, 101 

drilled within 10 km of one another, contain the highest U contents of any studied here 102 

with maximum U contents ranging from 0.5 to 10 ppm (Supplementary data). The 103 

samples from Sites 543A and 163 contain much lower U contents (maximum U contents 104 

of 80 and 120 ppb respectively) but still have some areas with relative high U/Pb 105 

allowing reasonably high precision age determinations. The data for the two samples with 106 

the highest U contents show some scatter (MSWD 4.8 and 5.3; Table 1), suggesting that 107 

other factors (multiple periods of growth, variable common lead isotope composition) 108 

could be important; the uncertainties take account of the scatter in regressions but their 109 

absolute uncertainties need to be used with some caution. Three samples have 110 

intermediate age uncertainties of ± 5–10 Myr (Fig. 1). These samples have maximum U 111 

contents ranging from 50 to 80 ppb but Pb contents generally <5 ppb allowing reasonably 112 

precise ages. The three samples with the largest uncertainties (±10–20 Myr) are from 113 

DSDP Site 595B (two samples) and the Troodos ophiolite; these samples contain <40 114 
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ppb U. For all of these samples there are no analyses with low common lead and hence 115 

there is a large extrapolation from the array of data to the concordia age intercept and the 116 

uncertainties quoted should be considered as minimum values. 117 

The new carbonate formation ages (Fig. 1; Table 1) provide the first direct 118 

determination of whether carbonate formation occurs soon after crustal accretion or 119 

throughout the life of a section of oceanic crust – both of which have been previously 120 

suggested (Staudigel and Hart, 1985; Alt and Teagle, 1999; Gillis and Coogan, 2011; 121 

Coogan and Dosso, 2015). Despite the analytical challenges in dating these materials it is 122 

clear that most carbonate forms soon after crustal accretion (Fig. 2); this interpretation is 123 

consistent with other preliminary data, collected in the same way, recently reported by 124 

Harris et al. (2014). Notably, none of the carbonate ages are >20 Myr younger than the 125 

crust despite all the study areas being in >80 Myr old crust. While fluid and heat fluxes 126 

are not expected to directly match chemical fluxes, it is notable that >80% of the off-axis 127 

hydrothermal heat flux is removed within 20 Myr of crustal accretion. 128 

DISCUSSION 129 

Conditions in the Aquifer During Carbonate Growth 130 

Carbonate mineral precipitation in the upper oceanic crust occurs largely in 131 

response to fluid-rock reactions that generate alkalinity and hence increase the saturation 132 

state of carbonate minerals (Coogan and Gillis, 2013). Heterogeneity in the U and Pb 133 

contents of the carbonates (Fig. 1; Supplementary material1) suggests that the 134 

concentrations of U and Pb in the aquifer fluid, and/or environmental conditions (pH, 135 

redox, T), varied during carbonate growth. Formation of secondary minerals at low 136 

temperatures adds U to the crust (e.g., Staudigel et al., 1995) and will lead to decreasing 137 
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U contents of the aquifer fluid as fluid-rock reaction progresses, at least partial explaining 138 

the observed variability in U/Pb. This fluid-rock reaction occurs despite the low 139 

carbonate formation temperatures (9–23 °C; Table 1). Such modification of the fluid 140 

composition, on timescales shorter than that of the growth of a single carbonate vein, 141 

needs careful consideration when interpreting past compositions of seawater from the 142 

compositions of carbonate minerals precipitated within the oceanic crust (e.g., Coggon et 143 

al., 2010; Rausch et al., 2013). 144 

Modern deep seawater contains very little Pb (~2 ppt; Bruland et al., 2014) and 145 

has a high U/Pb (~1000) and fluids entering the crustal aquifer have probably had 146 

similarly high U/Pb throughout the Phanerozoic. The low Pb content of seawater, and its 147 

short residence time, means that the Pb-isotopic composition of seawater can vary on 148 

short timescales (kyr). Thus, variations in the Pb content, and isotopic composition, of the 149 

aquifer fluid during the growth of a carbonate vein may be caused by either: (i) changing 150 

seawater Pb content/isotopic composition, and/or (ii) fluid-lava or fluid-sediment 151 

reactions; i.e., no additional source of Pb is required by the Pb-isotope variability 152 

although it cannot be ruled out. 153 

The excess scatter of the data about a linear correlation (i.e., MSWD >2.0 at 2) 154 

between 238U/206Pb and 207Pb/206Pb in some samples (Fig. 1) most likely reflects either: (i) 155 

varying Pb-isotopic composition of the fluid that the carbonate grew from, (ii) protracted 156 

carbonate growth and/or (iii) analytical factors difficult to correct for in low-signal 157 

analyses. Protracted growth of carbonates, perhaps over millions of years, may be a 158 

natural consequence of the large fluid fluxes required to supply sufficient C to the crust to 159 

form the mass of carbonate observed in some drill cores (Coogan and Gillis, 2013). 160 
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Low-Temperature Alteration Occurs Early 161 

It is clear from the new data reported here that most carbonate precipitation within 162 

the upper oceanic crust occurs within the first 20 Myr after crustal formation (>80%; 163 

Figure 2, 3). Our samples come from a wide range of locations and from crust with ages 164 

between 80 and 148 Myr but none of the carbonates ages are >16 Myr younger than the 165 

crustal age. The only previous approach to determining the timing of carbonate formation 166 

in the ocean crust compares the Sr-isotopic compositions of carbonates with the seawater 167 

Sr-isotope curve. This approach gives a non-unique result both because the seawater 168 

curve shows fluctuations in 87Sr/86Sr, and because basalt dissolution lowers the 87Sr/86Sr 169 

of crustal fluids. Early qualitative approaches concluded that carbonates were precipitated 170 

within 10–15 Myr of crustal accretion assuming no basaltic Sr in the fluid (Staudigel and 171 

Hart, 1985). More recent quantitative models show that the data can be explained with an 172 

exponentially decreasing rate of carbonate precipitation with 85% of carbonate 173 

precipitated within <20 Myr of crustal accretion (Gillis and Coogan, 2011; Coogan and 174 

Dosso, 2015). The good agreement between the model ages and the direct age 175 

determinations presented here (Fig. 3) suggest that the assumptions inherent in the Sr-176 

isotope model ages are reasonable. 177 

It is useful to compare the U-Pb age distribution of carbonates with previous 178 

radiometric age determinations for other low temperature alteration minerals formed in 179 

the upper ocean crust. The most robust data sets come from K-Ar and Rb-Sr dating of 180 

celadonite with just a few alteration age determinations from Rb-Sr isochron ages that 181 

include clays and zeolites. Existing K-Ar ages of alteration of upper ocean crust come 182 

almost entirely from celadonites in the Troodos ophiolite (54 samples from Gallahan and 183 
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Duncan, 1994, and 4 from Staudigel et al., 1986). Comparison of these K-Ar ages to Rb-184 

Sr ages of 18 of the same celadonites suggests that they may have suffered some Ar-loss, 185 

with Rb-Sr dates generally older (by a maximum of 14 Myr and an average of 5 Myr; 186 

Booij et al., 1995). Celadonite formation as a function of time after crustal accretion 187 

follows a similar pattern to carbonate formation although perhaps offset toward forming 188 

slightly later (Fig. 3); this probably simply reflects different sample suites rather than a 189 

real difference in the timing of carbonate and celadonite formation. Likewise, the limited 190 

existing isochron age determinations of ocean crust alteration suggest this occurs soon 191 

after crustal accretion (e.g., Richardson et al., 1980; Staudigel et al., 1986). Thus it seems 192 

clear that, in general, the vast majority of the low temperature alteration of the upper 193 

oceanic crust occurs within 20 Myr of crustal accretion (Fig. 3). 194 

Several studies have suggested that carbonates are the last phases to form during 195 

off-axis alteration of the upper oceanic crust (Staudigel et al., 1981; Alt and Honnorez, 196 

1984; Gillis and Robinson, 1990). This is difficult to reconcile with the need for 197 

alkalinity generating fluid-rock reaction to drive carbonate precipitation because these 198 

must be accompanied by the formation of secondary silicates. The new age data suggest 199 

carbonates and secondary silicates form over the same time interval (largely in the first 200 

20 Myr after crustal accretion) resolving this paradox. 201 

Implications for the Regulation of Ocean Chemistry 202 

The relatively rapid alteration of new upper oceanic crust (Fig. 2, 3) has important 203 

implications for testing whether low-temperature alteration of the oceanic crust plays an 204 

important role in the feedback mechanisms that regulate ocean chemistry and the long-205 

term carbon cycle. If this model is correct then, on a timescale of 10–20 million years 206 
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(i.e. the timescale of the majority of chemical exchange), there should be a correlation 207 

between the composition of altered oceanic crust and the global environmental 208 

conditions. The higher C content of Cretaceous than Cenozoic altered upper oceanic crust 209 

supports a model of increased alkalinity production during periods of globally warm 210 

conditions (Gillis and Coogan, 2011). This model also makes predictions for the average 211 

change in Sr and Mg isotopic composition of upper ocean crust of different ages (Coogan 212 

and Dosso, 2015; Higgins and Schrag, 2015), as well as other element and isotope 213 

systems. However, we caution that local crustal hydrological conditions will have to be 214 

considered to ensure a signal relevant to global fluxes is extracted from such data. 215 
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 305 

FIGURE CAPTIONS 306 

 307 

Figure 1. Tera-Wasserburg concordia plots showing 238U/206Pb versus 207Pb/206Pb (age 308 

and uncertainty are show in the title). The samples are ordered such that the more precise 309 

ages are in the upper row and the least precise ages in the lower row. 310 

 311 

Figure 2. Comparison of the measured carbonated age and the estimated age of the crust 312 

the carbonate came from. Considering the errors associated with both ages, the carbonate 313 

and crustal ages are virtually identical (gray symbols are samples shown in the lower row 314 

in Fig. 1, with large extrapolations to the age intercept). The inset shows the same but 315 

with the axes starting at zero, the time of sampling, showing more clearly that although 316 

the carbonates could, theoretically, have formed at any time after crustal accretion (i.e., 317 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G37212.1 

Page 15 of 18 

vertically down from the 1:1 line in the gray polygon) they actually formed very soon 318 

after crustal accretion. 319 

 320 

Figure 3. Comparison of the cumulative fraction of secondary minerals formed by low 321 

temperature alteration of the upper oceanic crust as a function of time after crustal 322 

accretion based on carbonate U-Pb ages (this study), celadonite K-Ar ages (Gallahan and 323 

Duncan, 1994; Staudigel et al., 1986), celadonite Rb-Sr ages (Booij et al., 1995) and 324 

carbonate Sr-isotopic composition modeling (Coogan and Dosso, 2015). The probability 325 

distribution for each age determination was summed across all samples, accounting for 326 

the individual age uncertainties, and the positive portion of this used to calculate the 327 

cumulative frequency. In cases where the measured age distribution includes time before 328 

crustal accretion these were normalized out of the probability distribution; this is only of 329 

any significance for the U-Pb carbonate ages. 330 

 331 

1GSA Data Repository item 2015xxx, [this provides further background on the sample 332 

sites and analytical techniques as well as all the full dataset], is available online at 333 

www.geosociety.org/pubs/ft2009.htm, or on request from editing@geosociety.org or 334 

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 335 

 336 
 337 
 338 
 339 
 340 
 341 
 342 
 343 
 344 
 345 
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 346 
 347 
 348 
 349 
 350 
 351 
 352 

TABLE 1: CARBONATE COMPOSITIONS AND AGES 353 
Sample Texture 

Crustal age 
(Myr) 

Ave U 
(ppb) 

Ave Pb 
(ppb) 

Age MSWD 207Pb/ 206Pb(i) 
13C 

(VPDB)b 
18O 

(SMOW)b 
Formation 
temp. (°C) 

595B-2R1–84–95* vein 95 13 3.5 115 ± 16 1.5 0.87 ± 0.01 2.6 30.5 14.0 
595B-3R2–12–18* vein 95 19 2.1 86 ± 14 6.6 0.85 ± 0.02 2.4 30.2 15.0 
543–16R6–114.5–118* vug/vein 80.8 50 3.7 91.3 ± 4.9 1.5 0.87 ± 0.01 2.5 30.9 12.5 
543–16R6–114.5–118D vug/vein 80.8      3.0 30.9 12.3 
163–29R5–0 vein 80.8 91 9.1 81.5 ± 3.3 1.15 0.85 ± 0.01 2.9 31.9 8.7 
164–28R3–23 vein 109 32 1.8 117.6 ± 9.6 0.42 0.83 ± 0.03 2.7 29.9 16.6 
164–28R4–44 vein 109 33 4.9 115.6 ± 5.4 1.07 0.84 ± 0.01 1.7 28.5 22.4 
417D-27R4–61 vein 120 124 3.6 103.9 ± 3.1 0.31 0.83 ± 0.01 1.8 30.2 15.4 
417D-31R4–8 vein 120 2457 49 127.5 ± 4.7 5.3 0.86 ± 0.05 1.6 28.4 22.9 
418A-15R3–144 vein 119.9 534 18 121.9 ± 4.7 4.8 0.85 ± 0.03 2.5 29.1 19.8 
307 13R2 145 vein 148.3 63 2.4 142.8 ± 8.6 0.9 0.83 ± 0.03 1.1 29.4 18.4 
2012CL26 vein 91.6 19 4.4 105 ± 19 1.7 0.89 ± 0.02 1.5 31.9 8.5 
2012CL26D vein 91.6      1.5 31.9 8.5 
   Note: We arbitrarily assign a ± 2 Myr uncertainty to all crustal ages except DSDP Site 595 for which the uncertainty is clearly larger and we 354 
assign ± 10 Myr (Supplementary material). D - duplicate analysis. Formation temperatures are calculated assuming a fluid 18O of 1 per mil 355 
and using the thermometer of Epstein et al. (1953) 356 
   i—intercept  357 
   *O and C isotopes data from Gillis and Coogan (2011). 358 
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Figure1: 360 
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Figure 3: 365 
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