10 research outputs found

    An integrated Bayesian analysis of LOH and copy number data

    Get PDF
    Background: Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. Results: To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public referenc

    Validating a 14-drug microtitre plate containing bedaquiline and delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis

    No full text
    UKMYC5 is a 96-well microtitre plate designed by the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) to enable the measurement of minimum inhibitory concentrations (MICs) of 14 different anti-TB compounds for >30,000 clinical tuberculosis isolates. Unlike the MYCOTB plate, on which UKMYC5 is based, the plate included two new (bedaquiline and delamanid) and two repurposed (clofazimine and linezolid) compounds. UKMYC5 plates were tested by seven laboratories on four continents using a panel of 19 external quality assessment (EQA) strains, including H37Rv. To assess the optimal combination of reading method and incubation time, MICs were measured from each plate by two readers using three methods (mirrored-box, microscope and Vizion™ Digital viewing system) after 7, 10, 14 and 21 days incubation. In addition, all EQA strains were whole-genome sequenced and phenotypically characterized by 7H10/7H11 agar proportion method (APM) and MGIT960. We conclude that the UKMYC5 plate is optimally read using the Vizion™ system after 14 days incubation, achieving an inter-reader agreement of 97.9% and intra- and inter-laboratory reproducibility of 95.6% and 93.1%, respectively. The mirrored-box had similar reproducibility. Strains classified as resistant by APM, MGIT960 or the presence of mutations known to confer resistance consistently record elevated MICs compared with those strains classified as susceptible. Finally, the UKMYC5 plate records intermediate MICs for one strain which the APM measured MICs close the applied critical concentration, providing early evidence that the UKMYC5 plate can quantitatively measure the magnitude of resistance to anti-TB compounds due to specific genetic variation

    Longitudinal single-cell profiling of chemotherapy response in acute myeloid leukemia.

    No full text
    Acute myeloid leukemia may be characterized by a fraction of leukemia stem cells (LSCs) that sustain disease propagation eventually leading to relapse. Yet, the contribution of LSCs to early therapy resistance and AML regeneration remains controversial. We prospectively identify LSCs in AML patients and xenografts by single-cell RNA sequencing coupled with functional validation by a microRNA-126 reporter enriching for LSCs. Through nucleophosmin 1 (NPM1) mutation calling or chromosomal monosomy detection in single-cell transcriptomes, we discriminate LSCs from regenerating hematopoiesis, and assess their longitudinal response to chemotherapy. Chemotherapy induced a generalized inflammatory and senescence-associated response. Moreover, we observe heterogeneity within progenitor AML cells, some of which proliferate and differentiate with expression of oxidative-phosphorylation (OxPhos) signatures, while others are OxPhos (low) miR-126 (high) and display enforced stemness and quiescence features. miR-126 (high) LSCs are enriched at diagnosis in chemotherapy-refractory AML and at relapse, and their transcriptional signature robustly stratifies patients for survival in large AML cohorts

    Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis

    Get PDF
    Background Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. Methods For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. Findings We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5–MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. Interpretation Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. Funding Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Skłodowska-Curie Actions
    corecore