8 research outputs found

    Mise en évidence d’une transition endothéliale/mésenchymateuse dans les lésions vasculaires pulmonaires d’hypertension artérielle pulmonaire par microscopie corrélative

    No full text
    National audienceL'hypertension artérielle pulmonaire résulte de l'obturation des artères pulmonaires de diamètre inférieur à 500 μm. Par microscopie corrélative, nous avons pu démontrer que cette obturation était la conséquence d'une trans-différenciation des cellules endothéliales en cellules mésenchymateuses

    Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Models.

    Get PDF
    BACKGROUND: Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension characterized by the obstruction of small pulmonary veins and a dismal prognosis. PVOD may be sporadic or heritable because of biallelic mutations of the EIF2AK4 gene coding for GCN2. Isolated case reports suggest that chemotherapy may be a risk factor for PVOD. METHODS AND RESULTS: We reported on the clinical, functional, and hemodynamic characteristics and outcomes of 7 cases of PVOD induced by mitomycin-C (MMC) therapy from the French Pulmonary Hypertension Registry. All patients displayed squamous anal cancer and were treated with MMC alone or MMC plus 5-fluoruracil. The estimated annual incidence of PVOD in the French population that have anal cancer is 3.9 of 1000 patients, which is much higher than the incidence of PVOD in the general population (0.5/million per year). In rats, intraperitoneal administration of MMC induced PVOD, as demonstrated by pulmonary hypertension at right-heart catheterization at days 21 to 35 and major remodeling of small pulmonary veins associated with foci of intense microvascular endothelial-cell proliferation of the capillary bed. In rats, MMC administration was associated with dose-dependent depletion of pulmonary GCN2 content and decreased smad1/5/8 signaling. Amifostine prevented the development of MMC-induced PVOD in rats. CONCLUSIONS: MMC therapy is a potent inducer of PVOD in humans and rats. Amifostine prevents MMC-induced PVOD in rats and should be tested as a preventive therapy for MMC-induced PVOD in humans. MMC-induced PVOD in rats represents a unique model to test novel therapies in this devastating orphan disease

    Mitomycin-Induced Pulmonary Veno-Occlusive Disease

    No full text
    BACKGROUND: Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension characterized by the obstruction of small pulmonary veins and a dismal prognosis. PVOD may be sporadic or heritable because of biallelic mutations of the EIF2AK4 gene coding for GCN2. Isolated case reports suggest that chemotherapy may be a risk factor for PVOD. METHODS AND RESULTS: We reported on the clinical, functional, and hemodynamic characteristics and outcomes of 7 cases of PVOD induced by mitomycin-C (MMC) therapy from the French Pulmonary Hypertension Registry. All patients displayed squamous anal cancer and were treated with MMC alone or MMC plus 5-fluoruracil. The estimated annual incidence of PVOD in the French population that have anal cancer is 3.9 of 1000 patients, which is much higher than the incidence of PVOD in the general population (0.5/million per year). In rats, intraperitoneal administration of MMC induced PVOD, as demonstrated by pulmonary hypertension at right-heart catheterization at days 21 to 35 and major remodeling of small pulmonary veins associated with foci of intense microvascular endothelial-cell proliferation of the capillary bed. In rats, MMC administration was associated with dose-dependent depletion of pulmonary GCN2 content and decreased smad1/5/8 signaling. Amifostine prevented the development of MMC-induced PVOD in rats. CONCLUSIONS: MMC therapy is a potent inducer of PVOD in humans and rats. Amifostine prevents MMC-induced PVOD in rats and should be tested as a preventive therapy for MMC-induced PVOD in humans. MMC-induced PVOD in rats represents a unique model to test novel therapies in this devastating orphan disease

    Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension

    No full text
    International audienceBackground Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K+ channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). Methods and Results We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. Conclusions In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted

    Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease

    No full text
    Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4 -/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.status: publishe
    corecore