11 research outputs found

    Development of a SERS strategy to overcome the nanoparticle stabilisation effect in serum-containing samples: Application to the quantification of dopamine in the culture medium of PC-12 cells

    Get PDF
    The analysis of serum samples by surface-enhanced Raman spectroscopy (SERS) has gained ground over the last years. However, the stabilisation of colloids by the proteins contained in these samples has restricted their use in common practice, unless antibodies or aptamers are used. Therefore, this work was dedicated to the development of a SERS methodology allowing the analysis of serum samples in a simple and easy-to-implement way. This approach was based on the pre-aggregation of the colloid with a salt solution. Gold nanoparticles (AuNPs) were used as the SERS substrate and, owing to its physiopathological importance, dopamine was chosen as a model to implement the SERS approach. The presence of this neurotransmitter could be determined in the concentration range 0.5 to 50 ppm (2.64 – 264 μM) in the culture medium of PC-12 cells, with a R2 of 0.9874, and even at lower concentrations (0.25 ppm, 1.32 μM) in another matrix containing fewer proteins. Moreover, the effect of calcium and potassium on the dopamine exocytosis from PC-12 cells was studied. Calcium was shown to have a predominant and dose-dependent effect. Finally, PC-12 cells were exposed to dexamethasone in order to increase their biosynthesis and release of dopamine. This increase was monitored with the developed SERS approach

    Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas

    Get PDF
    Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3–6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level

    Circadian rhythms and feeding time in fishes

    No full text
    corecore