889 research outputs found

    Potts Models with (17) Invisible States on Thin Graphs

    Full text link
    The order of a phase transition is usually determined by the nature of the symmetry breaking at the phase transition point and the dimension of the model under consideration. For instance, q-state Potts models in two dimensions display a second order, continuous transition for q = 2,3,4 and first order for higher q. Tamura et al recently introduced Potts models with "invisible" states which contribute to the entropy but not the internal energy and noted that adding such invisible states could transmute continuous transitions into first order transitions. This was observed both in a Bragg-Williams type mean-field calculation and 2D Monte-Carlo simulations. It was suggested that the invisible state mechanism for transmuting the order of a transition might play a role where transition orders inconsistent with the usual scheme had been observed. In this paper we note that an alternative mean-field approach employing 3-regular random ("thin") graphs also displays this change in the order of the transition as the number of invisible states is varied, although the number of states required to effect the transmutation, 17 invisible states when there are 2 visible states, is much higher than in the Bragg-Williams case. The calculation proceeds by using the equivalence of the Potts model with 2 visible and r invisible states to the Blume-Emery-Griffiths (BEG) model, so a by-product is the solution of the BEG model on thin random graphs.Comment: (2) Minor typos corrected, references update

    The Gonihedric Ising Model and Glassiness

    Full text link
    The Gonihedric 3D Ising model is a lattice spin model in which planar Peierls boundaries between + and - spins can be created at zero energy cost. Instead of weighting the area of Peierls boundaries as the case for the usual 3D Ising model with nearest neighbour interactions, the edges, or "bends" in an interface are weighted, a concept which is related to the intrinsic curvature of the boundaries in the continuum. In these notes we follow a roughly chronological order by first reviewing the background to the formulation of the model, before moving on to the elucidation of the equilibrium phase diagram by various means and then to investigation of the non-equilibrium, glassy behaviour of the model.Comment: To appear as Chapter 7 in Rugged Free-Energy Landscapes - An Introduction, Springer Lecture Notes in Physics, 736, ed. W. Janke, (2008

    (Four) Dual Plaquette 3D Ising Models

    Get PDF
    A characteristic feature of the 3d plaquette Ising model is its planar subsystem symmetry. The quantum version of this model has been shown to be related via a duality to the X-Cube model, which has been paradigmatic in the new and rapidly developing field of fractons. The relation between the 3d plaquette Ising and the X-Cube model is similar to that between the 2d quantum transverse spin Ising model and the Toric Code. Gauging the global symmetry in the case of the 2d Ising model and considering the gauge invariant sector of the high temperature phase leads to the Toric Code, whereas gauging the subsystem symmetry of the 3d quantum transverse spin plaquette Ising model leads to the X-Cube model. A non-standard dual formulation of the 3d plaquette Ising model which utilises three flavours of spins has recently been discussed in the context of dualising the fracton-free sector of the X-Cube model. In this paper we investigate the classical spin version of this non-standard dual Hamiltonian and discuss its properties in relation to the more familiar Ashkin-Teller-like dual and further related dual formulations involving both link and vertex spins and non-Ising spins.Comment: Reviews results in arXiv:1106.0325 and arXiv:1106.4664 in light of more recent simulations and fracton literature. Published in special issue of Entropy dedicated to the memory of Professor Ian Campbel

    Awareness and Demand for Native Ornamental Plants in the Nursery Industry of Sri Lanka: A Case Study from Diyatha Flower Market

    Get PDF
    Native plants, whose establishment is restricted to a certain geographical area and are well adapted to the local environment, are considered an important component of plant biodiversity. Owing to their unique properties which help directly and indirectly to enhance biodiversity, natives are recommended to be used for landscaping and restoration. Despite their functional value, natives are not readily available in the market as opposed exotic plants. Even though Sri Lanka is rich of native flora, the tendency towards the use of native plants in Sri Lanka is relatively low. Therefore this study is focused to assess the potential, availability and knowledge of plant sellers on native plants. The study was carried out in Diyatha Flower Market (DFM) with a sample of 109 sellers using a pre-tested questionnaire. The questionnaire consisted of social and demographical information, knowledge on native plants, sales and production information, constraints, suggestions and future potential. The association between native plant knowledge and demographic factors of the sellers were measured by the Pearson chi square test. The results highlighted that the majority of respondents were not aware about native plants whilegender, age, civil status, experience in the plant industry and experience in DFM were not associated with the level of knowledge on native plants. Only the educational level was significantly associated with native plant knowledge (p=0.011). The respondents with diploma, degree and postgraduate qualifications have indicated a 100% positive response for the knowledge about native plants. Eventhough 49% of the plant sellers have a moderate to high knowledge level on native plants, there is no demand for native ornamental plants from the customers hence sellers do not sell native plants at DFM. This is evident by the dearth of such plants in residential and public gardens. Hence at the DFM, which is the largest flower market in Sri Lanka, none of the plant sellers possess native ornamental plants. However, the native ornamental plant market is an emerging and fast growing industry in developed countries. Nevertheless 10% of the plant sellers engaged on native fruit and medicinal plant sales. According to plant sellers, main barriers to introduce native ornamental plants were unfamiliarity about native plants and lack of demand from customers. Hence it is vital to educate general public on potential benefits of native plants in view of promoting native plants in the landscape industry in Sri Lanka.Keywords: Diyatha flower market, Landscape industry, Native ornamental plant

    Identification of Haptic Based Guiding Using Hard Reins

    Get PDF
    This paper presents identifications of human-human interaction in which one person with limited auditory and visual perception of the environment (a follower) is guided by an agent with full perceptual capabilities (a guider) via a hard rein along a given path. We investigate several identifications of the interaction between the guider and the follower such as computational models that map states of the follower to actions of the guider and the computational basis of the guider to modulate the force on the rein in response to the trust level of the follower. Based on experimental identification systems on human demonstrations show that the guider and the follower experience learning for an optimal stable state-dependent novel 3rd and 2nd order auto-regressive predictive and reactive control policies respectively. By modeling the follower's dynamics using a time varying virtual damped inertial system, we found that the coefficient of virtual damping is most appropriate to explain the trust level of the follower at any given time. Moreover, we present the stability of the extracted guiding policy when it was implemented on a planar 1-DoF robotic arm. Our findings provide a theoretical basis to design advanced human-robot interaction algorithms applicable to a variety of situations where a human requires the assistance of a robot to perceive the environment

    Evidence for a first order transition in a plaquette 3d Ising-like action

    Get PDF
    We investigate a 3d Ising action which corresponds to a a class of models defined by Savvidy and Wegner, originally intended as discrete versions of string theories on cubic lattices. These models have vanishing bare surface tension and the couplings are tuned in such a way that the action depends only on the angles of the discrete surface, i.e. on the way the surface is embedded in Z3{\bf Z}^3. Hence the name gonihedric by which they are known. We show that the model displays a rather clear first order phase transition in the limit where self-avoidance is neglected and the action becomes a plaquette one. This transition persists for small values of the self avoidance coupling, but it turns to second order when this latter parameter is further increased. These results exclude the use of this type of action as models of gonihedric random surfaces, at least in the limit where self avoidance is neglected.Comment: 4 pages Latex text, 4 postscript figure

    Robust sensing suite for measuring temporal dynamics of surface temperature in sewers

    Full text link
    © 2018, The Author(s). Sewerage systems are paramount underground infrastructure assets for any nation. In most cities, they are old and have been exposed to significant microbial induced corrosion. It is a serious global problem as they pose threats to public health and economic repercussions to water utilities. For managing sewer assets efficaciously, it is vital to predict the rate of corrosion. Predictive models of sewer corrosion incorporate concrete surface temperature measurements as an observation. However, currently, it has not been fully utilized due to unavailability of a proven sensor. This study reports the feasibility of infrared radiometer for measuring the surface temperature dynamics in the aggressive sewer conditions. The infrared sensor was comprehensively evaluated in the laboratory at different environmental conditions. Then, the sensor suite was deployed in a Sydney based sewer for three months to perform continuous measurements of surface temperature variations. The field study revealed the suitability of the developed sensor suite for non-contact surface temperature measurements in hostile sewer conditions. Further, the accuracy of the sensor measurements was improved by calibrating the sensor with emissivity coefficient of the sewer concrete. Overall, this study will ameliorate the present sewer corrosion monitoring capabilities by providing new data to models predicting sewer corrosion
    • …
    corecore