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Abstract: A characteristic feature of the 3d plaquette Ising model is its planar subsystem symmetry.
The quantum version of this model has been shown to be related via a duality to the X-Cube model,
which has been paradigmatic in the new and rapidly developing field of fractons. The relation
between the 3d plaquette Ising and the X-Cube model is similar to that between the 2d quantum
transverse spin Ising model and the Toric Code. Gauging the global symmetry in the case of the 2d
Ising model and considering the gauge invariant sector of the high temperature phase leads to the
Toric Code, whereas gauging the subsystem symmetry of the 3d quantum transverse spin plaquette
Ising model leads to the X-Cube model. A non-standard dual formulation of the 3d plaquette Ising
model which utilises three flavours of spins has recently been discussed in the context of dualising
the fracton-free sector of the X-Cube model. In this paper we investigate the classical spin version
of this non-standard dual Hamiltonian and discuss its properties in relation to the more familiar
Ashkin–Teller-like dual and further related dual formulations involving both link and vertex spins
and non-Ising spins.
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1. Introduction

The Kramers–Wannier dual [1] of the classical Ising Hamiltonian with nearest neighbour 〈ij〉
couplings on a 3d cubic lattice

HIsing = −∑
〈ij〉

σiσj (1)

is the 3d Ising gauge theory
HGauge = −∑

�
UUUU (2)

where the sum runs over plaquettes � and the gauge spins U live on the edges of the plaquettes.
The coupling β in the partition function Z(β) = ∑{σ} exp(−βHIsing) and its dual β∗ in Z(β∗) =

∑{U} exp(−β∗HGauge) are related by β∗ = − 1
2 log[tanh(β)]. We use un-superscripted variables, e.g.,

U, σi, τi, µi, to denote spins in classical Hamiltonians and superscripted variables, e.g., σx,z
i , τx,z

i , µx,z
i ,

to denote the Pauli matrices appearing in quantum Hamiltonians. The positional subscript indices
i, j, k . . . are occasionally omitted for brevity.

In this paper we will investigate the relation between four (apparently) different formulations of
the dual to the 3d plaquette Ising model, which has also been dubbed the gonihedric Ising model [2–5]

Hκ=0 = −∑
�

σiσjσkσl . (3)
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This, like the 3d Ising gauge theory, has a plaquette � interaction but the spins now reside at the
vertices of a 3d cubic lattice rather than on its edges. The subscript κ = 0 appears because this plaquette
Hamiltonian is a particular case of a one-parameter family of gonihedric Hamiltonians

Hgonihedric = −4κ ∑
〈ij〉

σiσj + κ ∑
〈〈ij〉〉

σiσj − (1− κ)∑
�

σiσjσkσl . (4)

defined by Savvidy and Wegner [6–16], where the 〈〈ij〉〉 are next-to-nearest neighbour spin interactions.
The weights of spin cluster boundaries in this Hamiltonian are tuned to mimic a gas of worldsheets
arising from a gonihedric string action. When the gonihedric string worldsheets are discretized using
triangulations, their action may be written as

S =
1
2 ∑
〈ij〉
|~Xi − ~Xj| θ(αij), (5)

where θ(αij) = |π − αij|, αij is the dihedral angle between the neighbouring triangles with a common
edge 〈ij〉 and |~Xi − ~Xj| are the lengths of the triangle edges. The ~Xi give the embeddings of the vertices
i of the worldsheet discretization in the ambient spacetime.

The word gonihedric was originally coined to reflect the properties of this action, which weights
edge lengths between non-coplanar triangles rather than the triangle areas, which is the case with a
discretization of the standard Nambu–Goto/Polyakov string action. It combines the Greek words
gonia for angle, referring to the dihedral angle, and hedra for base or face, referring to the adjacent
triangles. Hgonihedric is an appropriate cubic lattice discretization for such an action because it too
assigns zero weight to the areas of spin cluster boundaries, weighting only edges and intersections [17].
This gives Hgonihedric very different properties to HIsing where only the areas of spin cluster boundaries
are weighted.

The 3d plaquette Ising action Hκ=0 has been shown to possess an exponentially (but
sub-extensively) degenerate low-temperature phase and a first order phase transition as well as
interesting, possibly glassy, dynamical properties [18–24]. A characteristic feature is that it displays a
planar subsystem symmetry in which planes of spins may be flipped at zero energy cost, accounting
for the degeneracy of the low temperature phase. This can be seen by looking at single cubes with a
flipped face as in Figure 1 and using these to tile the lattice. Since multiple faces can be flipped on the
cube, intersecting planes of flipped spins are also possible.

Figure 1. Flipping the value of the Ising spins on a face of a single cube in the 3d plaquette Ising
Hamiltonian Hκ=0 does not change its contribution to the energy. The first cube configuration is the
ferromagnetic state with all spins +. The spins at the corners of the dark shaded faces on the other
three are −, the others +. All four of the single cube configurations shown have the same energy.

The degeneracy affects the finite size scaling behaviour at the first order transition [25–29],
changing the universal 1/L3 finite size scaling shift in estimates of a first order transition point on an
L3 lattice (with periodic boundary conditions) [30,31] to 1/L2. For non-zero κ the planar subsystem
symmetry appears to be broken at finite temperature [32,33] and the transition becomes second order.
The Kramers–Wannier dual to Hκ=0 takes the form of an anisotropic Ashkin–Teller model [34]. It still



Entropy 2020, 22, 633 3 of 16

possesses a planar subsystem symmetry and degenerate low temperature phase, so the modified finite
size scaling at the first order transition is observed there also [25–29].

The subsystem symmetry in the quantum spin version of the 3d plaquette Ising model has
recently been shown to be closely linked to the properties of the X-Cube model [35], which has become
a paradigmatic model for the new and rapidly developing field of fractons, which are quasiparticles
with restricted mobility in isolation. Some recent reviews of what is now a burgeoning fracton literature
can be found in [36,37]. To see the role played by the subsystem symmetry in constructing the X-Cube
model, first consider gauging the global Z2 symmetry in the case of the 2d quantum transverse spin
Ising model

H = −β ∑
〈ij〉

σz
i σz

j − h ∑
i

σx
i . (6)

This can be done by introducing τz on the links and an additional plaquette flux term to endow the
link spins with dynamics, which gives a gauge-invariant Ising (or Z2 gauge–Higgs [38–40]) model

H = −β ∑
〈ij〉

σz
i τzσz

j − h ∑
i

σx
i − βp ∑

�
τzτzτzτz (7)

where we have dropped the link indices on the τz for conciseness. The gauge-invariant sector of the
high temperature phase, β→ 0, of this model, where σx

i ∏k∈+,i τx
k = 1 and k labels the four edges (+)

incident to vertex i, gives Kitaev’s Toric Code model [41,42]

H = −h ∑
i

Ai − βp ∑
�

B� . (8)

We use the gauge invariance to trade σx
i for ∏k∈+,i τx

k , leaving the mutually commuting terms

Ai = ∏
k∈+,i

τx
k , B� = ∏

i∈�
τz

i . (9)

and customarily set h = βp = 1. The Toric code displays topological order and has anyonic
quasiparticle excitations.

On the other hand, gauging the subsystem symmetry of the 3d plaquette Ising model in a similar
manner leads to the X-Cube model [35]. In this case, when we start with the quantum transverse spin
3d plaquette Ising model Hamiltonian

H = −β ∑
�

σz
i σz

j σz
k σz

l − h ∑
i

σx
i (10)

gauging the Z2 subsystem symmetry requires inserting a τz which lives on the plaquettes

H = −β ∑
�

τzσz
i σz

j σz
k σz

l − h ∑
i

σx
i + . . . (11)

The equivalent of the plaquette flux term in the Toric Code derivation is now a set of three “X” terms
as shown in Figure 2, one in each lattice plane Bxy,yz,xz

i = ∏j∈+,i τz
j . If we again consider the gauge

invariant sector σx
i ∏k∈�,i τx

k = 1, where the τx
k live on the twelve incident plaquettes impacted

by flipping the single central spin at site i, the high temperature limit β → 0 produces the X-Cube
Hamiltonian

H = −∑ A� −∑
i

Bxy
i −∑

i
Byz

i −∑
i

Bxz
i

where it is simpler to think of the τx, τz’s residing on the links of the dual lattice. The A term is a
product of all the τx around a cube and the B terms are the three “crosses” of τz ’s shown in Figure 2.
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Figure 2. The terms contributing to the X-Cube Hamiltonian. The cube A term is a product of the
twelve τx spins on the edges of the cube and the three B “X” terms composed of τz spins lie in each of
the three lattice planes as shown on the corner.

The remaining couplings have again been set to one. The quasiparticles arising from defects in
the A terms are fractons and cannot move in isolation, whereas the defects in the B terms give lineons,
which can only move in straight lines. The order in the X-Cube model is not topological. It has an
exponential, but sub-extensive, ground state degeneracy inherited from the plaquette Ising model as a
consequence of the subsystem symmetry.

It was observed recently in [43] that the Hamiltonian for the fracton-free subsector (where all the
A cube terms are +1) of the X-Cube model in a transverse field

H = −∑
i

Bxy
i −∑

i
Byz

i −∑
i

Bxz
i − g′∑ τx (12)

could be written in terms of a dual Hamiltonian (at the risk of causing confusion we have kept the
notation of [35] for the A and B terms rather than [43], which swaps A and B, though we denote the
edge Pauli matrices by τ rather than σ in distinction to both [35,43]) with three flavours of Ising spins
σi, τi, µi living on the vertices of the cubic lattice rather than the links

H = − g′∑
〈ij〉

σz
i σz

j µz
i µz

j − g′ ∑
〈ik〉

τz
i τz

k µz
i µz

k − g′ ∑
〈jk〉

σz
j σz

k τz
j τz

k (13)

− ∑
i
(σx

i µx
i + τx

i µx
i + σx

i τx
i ) ,

where the nearest neighbour sums in the four spin terms each run along one of the orthogonal axes,
with ij, ik and jk representing the z, y and x axes respectively. The constraint on the A terms is
automatically resolved by these spins.

In this paper we discuss the properties of the classical spin version of this Hamiltonian,

Hdual2 = −∑
〈ij〉

σiσjµiµj −∑
〈ik〉

τiτkµiµk −∑
〈jk〉

σjσkτjτk , (14)

dubbed Hdual2 for reasons to be explained in the next section. We shall see that it is closely
related via a gauge-fixing to the Ashkin–Teller-like [44] Hamiltonian, Hdual1, constructed using the
classical Kramers–Wannier duality from the 3d plaquette Ising model, as well as though a decoration
transformation to a third Hamiltonian, Hdual3, which mixes edge and vertex spins. We find that the
characteristic planar subsystem symmetry of the 3d plaquette Ising model is still present in Hdual1,2,3
and also that the interesting, possibly glassy, dynamical properties of the 3d plaquette model are also
apparent in the duals. The Hamiltonians Hdual2,3 are already implicit in the discussion by Savvidy and
Wegner in [45] in the context of the general framework for dualities [46] in spin models.
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2. Duals Galore

The Kramers–Wannier dual to Hκ=0 was initially constructed by Savvidy et al. [34] by considering
the high temperature expansion of the plaquette Hamiltonian

Z(β) = ∑
{σ}

exp(−βHκ=0)

= ∑
{σ}

∏
�

cosh (β)
[
1 + tanh (β) (σiσjσkσl)

]
(15)

which can be written as
Z(β) = [2 cosh (β)]3L3

∑
{S}

[tanh (β)]n(S) (16)

on an L3 cubic lattice, where the sum runs over closed surfaces with an even number of plaquettes at
any vertex. In the summation n(S) is the number of plaquettes in a given surface. The low temperature
expansion, i.e., high temperature in the dual variable

β∗ = −(1/2) log[tanh(β)]

of the following anisotropic Hamiltonian

Hdual0 = −∑
〈ij〉

σiσj −∑
〈ik〉

τiτk −∑
〈jk〉

ηjηk (17)

produced the requisite diagrams. In Hdual0 the sums are one-dimensional and run along the orthogonal
axes, with ij, ik and jk again representing the z, y and x axes respectively using our conventions. The
spins are non-Ising and live in the fourth order Abelian group, since the geometric constraints on
having an even number of plaquettes at each vertex mean that

eσ = σ , eτ = τ , eη = η

σ2 = τ2 = η2 = e (18)

στ = η , τη = σ , ησ = τ

with e being the identity element. They can be thought of as representing differently oriented matchbox
surfaces such as that shown in Figure 3, which are combined by facewise multiplication.

Figure 3. One of the matchbox surfaces which satisfy the algebra of Equation (18).

The shaded faces carry a negative sign and the associated spin variable lives at the centre of the
matchbox. Any spin cluster boundary in the model can be constructed from such matchboxes while
still satisfying the local constraint on the number of incident plaquettes.

The spins may also be taken to be Ising (±1) variables if we set ηi = σi τi, which is more convenient
for simulations. This modifies Hdual0 to an anisotropically coupled Ashkin–Teller Hamiltonian [44]

Hdual1 = −∑
〈ij〉

σiσj −∑
〈ik〉

τiτk −∑
〈jk〉

σjσkτjτk . (19)
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This formulation of the dual model was first investigated numerically in [47] and it was found that
it displayed a first order phase transition and a similar planar subsystem symmetry to that of Hκ=0.
The continued presence of the subsystem symmetry was a consequence of the anisotropic couplings,
which allowed a greater freedom in transforming the spin variables than in the isotropically coupled
version of Equation (19), which is just the Ashkin–Teller model at its four-state Potts point.

It is possible to construct Hdual1 and its higher dimensional equivalents [45] using the general
framework for duality in Ising lattice spin models that was first formulated by Wegner in [46].
Suprisingly, there are two further possible ways to write the dual to Hκ=0 in three dimensions with this
machinery, using either the general formula for the dual of codimension one surfaces or the formula
for the dual of two dimensional surfaces in d dimensions. If we temporarily use the notation of [45],
the dual Hamiltonian for a codimension one surface in d dimensions is given there by

Hd
dual,codim1 = − ∑

α<β,~r
∏

γ

Λα,βγ(~r)Λα,βγ(~r +~eγ)Λβ,αγ(~r)Λβ,αγ(~r +~eγ)

(20)

where the Λ spins live on each of the (d− 3) dimensional (hyper)vertices situated at the vertices~r of
the hypercubic lattice and the indices α, β, γ run from 1 to d. The unit vectors~eγ point along the lattice
axes. On the other hand, the dual Hamiltonian for a two-dimensional gonihedric surface embedded in
d dimensions is of the form

Hd
dual, 2d = −∑

~r
∑

β 6=γ

Λβγ(~r)Γ(~r,~r +~eγ)Λβγ(~r +~eγ) (21)

where we now have Γ spins on each (hyper)edge in addition to the Λ spins at each vertex.
If we specialize to two dimensional plaquette surfaces embedded in a cubic lattice in three

dimensions, which is the case for the dual of Hκ=0, either formulation may be employed since this
is both a codimension one surface and a two-dimensional surface embedded in three dimensions.
Returning to our own notation, the codimension one Hamiltonian of Equation (20) in three dimensions
may be written as

Hdual2 = −∑
〈ij〉

σiσjµiµj −∑
〈ik〉

τiτkµiµk −∑
〈jk〉

σjσkτjτk ,

which is just the Hamiltonian of Equation (14) that appeared as the classical spin limit of the dual to
the fracton-free subspace of the X-Cube model. The three flavours of spins living at each vertex display
a local Ising gauge symmetry σi, τi, µi → γiσi, γiτi, γiµi in addition to the planar subsystem symmetry
shared with Hκ=0 and Hdual1, as we shall see presently.

Still within the general approach of Savvidy and Wegner [45,46], in three dimensions the
Hamiltonian of Equation (21) for the two-dimensional surface variant also contains three flavours
of vertex spins σi, τi, µi, but in addition there are gauge-like spin variables U1,2,3

ij living on the lattice
edges which couple in an anisotropic manner to the vertex spins

Hdual3 = −∑
〈ij〉

(
σiU1

ijσj + µiU1
ijµj

)
−∑
〈ik〉

(
τiU2

ikτk + µiU2
ikµk

)
− ∑

〈jk〉

(
σjU3

jkσk + τjU3
jkτk

)
. (22)

We thus have four different Hamiltonian formulations for the dual of the plaquette Hamiltonian Hκ=0

in three dimensions:

• Hdual0 in Equation (17) with non-Ising spins.
• Hdual1 in Equation (19) with Ising spins, which is Ashkin–Teller in form.
• Hdual2 in Equation (14) containing purely four spin interactions.
• Hdual3 in Equation (22) containing both vertex spins and gauge-like edge spins.
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We have already seen that setting ηi = σi τi in Hdual0 in equ. (17), with σi, τi being Ising spins, keeps the
algebra of Equation (18) intact and gives the Ashkin–Teller Hamiltonian of Hdual1 in Equation (19). In
the next section we discuss the relation between the four-spin Hamiltonian Hdual2 of Equation (14) and
the gauge-spin Hamiltonian Hdual3 of Equation (22), and thereafter that between Hdual2 and Hdual1.

3. Decoration

The equivalence between Hdual3 and Hdual2 is a consequence of a variation of the classical
decoration transformation [48]. In the standard transformation an edge with spins σ1, σ2 at each
vertex is decorated with a link spin s as in Figure 4.
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��
��

��
��
��
��
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���
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���
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���
���
���

β

ββ

Figure 4. The standard decoration transformation. Summing over the central spin s denoted by an
open dot gives a new effective coupling β = 1

2 log[cosh(2β̃)] between the spins on the end of the link.

If the coupling between s and σ1 and σ2 is β̃, summing over the central spin s gives rise to a new
effective coupling β between the primary vertex spins σ1, σ2

∑
s

exp
[
β̃s(σ1 + σ2)

]
= A exp(βσ1σ2). (23)

Both the prefactor A and the coupling β may be expressed in terms of β̃ by enumerating possible spin
configurations in Equation (23). This gives

A = 2 cosh(2β̃)1/2

β =
1
2

log[cosh(2β̃)]. (24)

We can repeat this procedure with the U spins on each edge in Hdual3. In this case each direction has
two flavours of vertex spin and performing the sum generates the four-spin couplings of Hdual2, for
example

∑
{U1

12}
exp

[
β̃
(

σ1U1
12σ2 + µ1U1

12µ2

)]
= A exp(βσ1σ2µ1µ2). (25)

where A and the relation between β, β̃ are the same as in Equation (24).
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The sum over U may be carried out globally over every edge which immediately demonstrates
equivalence of the partition functions for Hdual3 and Hdual2

Z = ∑
{U,σ}

exp[−β̃Hdual3]

= ∑
{U,σ}

exp

β̃ ∑
〈ij〉

(
σiU1

ijσj + µiU1
ijµj

)
+ β̃ ∑

〈ik〉

(
τiU2

ikτk + µiU2
ikµk

)

+ β̃ ∑
〈jk〉

(
σjU3

jkσk + τjU3
jkτk

) (26)

= B ∑
{σ}

exp

β

∑
〈ij〉

σiσjµiµj + ∑
〈ik〉

τiτkµiµk + ∑
〈jk〉

σjσkτjτk


= B ∑

{σ}
exp[−βHdual2].

The overall factor B coming from a product of A’s on the individual links is irrelevant for
calculating physical quantities and the two couplings are again related by the decoration relation,
β = 1

2 log[cosh(2β̃)].

4. Gauge Fixing and Subsystem Symmetry

The equivalence between Hdual2 and Hdual1, on the other hand, is a consequence of a gauge
symmetry which is present in Hdual2 [49]

σi, τi, µi → γiσi, γiτi, γiµi . (27)

We are at liberty to choose the Ising spin gauge transformation parameter γi to be equal to one of the
spin values, say µi, at each site so the gauge transformation then becomes

σi, τi, µi → µiσi, µiτi, 1 (28)

which, using the fact that the sum over the remaining spin variables σi, τi is invariant under the
transformation, relates the partition functions for the two Hamiltonians as

Z = ∑
{σ,τ,µ}

exp [−βHdual2(σ, τ, µ)]

= 2L3
∑
{σ,τ}

exp [−βHdual2(σ, τ, µ = 1)] (29)

= 2L3
∑
{σ,τ}

exp [−βHdual1(σ, τ)] .

The coupling β is not transformed in this case and we can, of course, choose to eliminate any one of
the three spins, which simply amounts to relabelling the axes. From this perspective Hdual1 is simply
a gauge-fixed version of Hdual2. This can be confirmed by Monte-Carlo simulations which measure
the same energies (and energy distributions) and transition points for the observed first order phase
transitions [49].

The equivalence between Hdual3 and Hdual2 described in the preceding section via the decoration
transformation also sheds light on the presence of this gauge symmetry in Hdual2. All the terms in
Hdual3 are of the gauge-matter coupling form σiUijσj, so this action possesses a similar, standard gauge
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invariance to that seen in other gauge-matter systems such as the gauge–Ising model of Equation (7),
namely

σi → γiσi , σj → γjσj , U1,3
ij → γiU

1,3
ij γj

τi → γiτi , τj → γjτj , U2,3
ij → γiU

2,3
ij γj (30)

µi → γiµi , µj → γjµj , U1,2
ij → γiU

1,2
ij γj .

When the U spins are summed over to give Hdual2, the gauge symmetry of the σ, τ and µ spins
in Equation (27) remains as an echo of this symmetry. In both cases if we look at a single site
transformation all three spins σi, τi and µi must be transformed. In Hdual3 this is a consequence of the
way in which the three edge spins U1,2,3

ij couple to the vertex spins.
A characteristic feature of Hdual1 is the planar subsystem symmetry intermediate between a gauge

and a global symmetry, just as with the 3d plaquette Ising Hamiltonian. For Hdual2 the anisotropic
couplings mean that it is still possible to flip planes of one of the spins (the one which is “missing”
from the interactions in the direction perpendicular to the planes) at zero energy cost as shown in
Figure 5.

σ µ

σ τ

τ µ

+−+ −++ ++−

Figure 5. Four Possible ground state spin configurations on a cube for Hdual2. The initial cube again
has all + spins and the σ, τ, µ values are shown for the spins at the corners of the darker shaded
flipped faces, with the other spins being positive. The directions of the anisotropic couplings in the
Hamiltonian are indicated.

It is also possible to flip two or three orthogonal faces on the cube, so tiling the entire lattice with
such combinations we can see that in addition to the purely ferromagnetic ground state we may have
arbitrary (and possibly intersecting) flipped planes of spins.

The ground state structure, and the mechanism of anisotropic couplings which allows the plane
spin flips, is thus identical to that in Hdual1, whose possible ground states on a single cube we recall for
comparison in Figure 6.

σ

σ τ

τ

+− −+ −−

Figure 6. Four possible ground state spin configurations on a cube for the Ashkin–Teller formulation
of the dual Hamiltonian, Hdual1. The σ, τ values are shown for the darker shaded flipped planes. The
directions of the anisotropic couplings in the Hamiltonian are again indicated.

Flipping the third spin µ in Hdual2, which is absent in Hdual1, is replaced by flipping both the σ and
τ spins in Hdual1, consistent with the gauge transformation relating the two Hamiltonians. In summary,
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the ground state structure of Hdual2 shows an interesting interplay between the gauge symmetry of
Equation (27) and the subsystem symmetry. The local gauge symmetry allows one to reduce the
effective number of degrees of freedom and recover the ground state structure of Hdual1.

Hdual3 is a similar case since the geometrical arrangement of the couplings is similar in spite of
the presence of the additional spins U on the links. Each of the σ, τ, µ spins couple in two directions,
which define the lattice planes in which they can be flipped without affecting the energy.

5. Indicative Monte-Carlo

Low precision Monte-Carlo simulations using simple Metropolis updates found a first order
phase transition in both Hdual2 and Hdual1 in the region β ' 1.3− 1.4 [47,49]. Much higher precision
simulations using multicanonical methods were later carried out for the original 3d plaquette Ising
model Hκ=0 and the Ashkin–Teller dual Hdual1 in order to accurately determine the transition point
(β∞ = 1.31328(12) in the case of the dual model) and confirm the non-standard finite size scaling that
is a consequence of the exponential degeneracy of the low temperature phase [25–29]. Even with the
modest statistics and the use of a Metropolis update in the simulations of [47,49] a sharp drop in the
energy, as would be expected for a first order transition, is clearly visible in the region of the transition
point. A plot of the energy is shown for various lattice sizes in Figure 7 for Hdual2 and the values for
Hdual1 are essentially identical.

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

 1.26  1.28  1.3  1.32  1.34  1.36  1.38  1.4

E

β

10 12 14 16 18 20

Figure 7. The energy for Hdual2 on lattices ranging from 103 to 203 from left to right. The lines joining
the data points are drawn to guide the eye. Data from Hdual1 is essentially identical.

The first order nature of the transition for Hdual2 and Hdual1 can be further confirmed by observing
a dual peak structure in the energy histogram P(E) near the transition point and a non-trivial value of
Binder’s energy cumulant

UE = 1− 〈E4〉
3〈E2〉2 (31)

as a consequence of the shape of P(E) [25,49].
Based on these observations, and allowing for a factor of 1/2 in our definitions of Hdual1 and

Hdual2 in [47,49], we would expect to see a transition in Hdual3 at the the value of β̃ found by inverting
the decoration transformation, namely 1

2 cosh−1(exp(1.3− 1.4)) = 0.99− 1.04 in the thermodynamic
limit. To confirm this expectation, we carried out Monte-Carlo simulations using 103, 123, 163 and 183

lattices with periodic boundary conditions for all spins at various temperatures, again with a simple
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Metropolis update. After an appropriate number of thermalization sweeps, 107 measurement sweeps
were carried out at each lattice size for each temperature.

Looking at measurements of the energy from our simulations of Hdual3 in Figure 8 we can see that
a similar sharp drop in the energy consistent with a first order transition is still present.
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Figure 8. The energy for Hdual3 on lattices ranging from 103 to 183 from left to right. The lines joining
the data points are drawn to guide the eye.

The observed finite size estimates for the transition temperatures βc(L) agree with those calculated
by transforming the values from Figure 7 using the decoration relation, e.g., for L = 10 we would
expect βc(10) ' 1

2 cosh−1[exp(1.27)] ' 0.97, as found directly in the simulation shown in Figure 8.
Further evidence for a first order transition with Hdual3, as noted above for the other dual Hamiltonians,
can be garnered by looking at the energy histogram P(E) to discern a dual peak structure near the
transition point. In Figure 9 P(E) is shown close to the estimated transition point for L = 10 at β ' 0.97
and there is clear evidence of two peaks.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

-5.8 -5.6 -5.4 -5.2 -5 -4.8 -4.6 -4.4 -4.2

P
(E

)

E

Figure 9. The energy histogram P(E) for Hdual3 close to the estimated transition point at β ' 0.97 on a
103 lattice.
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The relatively low statistics and the use of a Metropolis update for the data presented here for
Hdual2 and Hdual3 mean that a high accuracy extrapolation using the correct 1/L2 finite size scaling for
the transition point is not feasible, which would require more extensive multicanonical simulations
along the lines of [25,26,29]. Nonetheless, the agreement of the suitably transformed finite size lattice
transition points in the Monte-Carlo simulations confirm that Hdual3 and Hdual2 are related by the
decoration transformation and the first order nature of the transition for Hdual3 is clear from the dual
peak form of P(E) near the transition point in Figure 9.

6. Dynamics

Another interesting feature of the original plaquette Hamiltonian Hκ=0 is its dynamical behaviour.
It possesses a region of strong metastability around the first order phase transition and displays glassy
characteristics at lower temperatures [18–24] with non-trivial ageing properties. We found that the
Ashkin–Teller dual Hamiltonian Hdual1 also shares these characteristics since it failed to relax to the
equilibrium minimum energy of E = −1.5 when cooled quickly from a hot start [47]. Note that in
this case, since we are exploring the real time dynamics of the system, simulations with a Metropolis
update are preferable to more sophisticated algorithms.

Hdual2 displays identical behaviour under cooling to Hdual1. We consider 203, 603 and 803 lattices
which are first equilibrated in the high temperature phase at T = 3.0 and then cooled at different rates
to zero temperature. The energy time series is recorded during this process. In Figure 10 we can see
that with a slow cooling rate of δT = 0.00001 per sweep, the model still relaxes to a ground state with
E = −1.5 for all the lattice sizes.

-1.6

-1.4

-1.2
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-0.8

-0.6

-0.4

-0.2
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	0 	0.5 	1 	1.5 	2 	2.5 	3

E

T

Figure 10. The time series of energy measurements obtained from cooling 203, 603 and 803 lattices from
a hot start at T = 3.0 at a rate of δT = 0.00001 per sweep. The traces are effectively indistinguishable.

However, as can be seen in Figure 11 with a faster cooling rate of δT = 0.001 per sweep the model
no longer relaxes to the ground state energy of E = −1.5, but is trapped at a higher value, which is
around −1.415 for the larger two (603 and 803) lattices.



Entropy 2020, 22, 633 13 of 16

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

	0

	0 	0.5 	1 	1.5 	2 	2.5 	3

60,80

20

E

T

Figure 11. The time series of energy measurements obtained from cooling 203, 603 and 803 lattices from
a hot start at a rate of δT = 0.001 per sweep.

Whether the observed behaviour under cooling is a sign of genuine glassiness in Hκ=0 or not
remains a matter of debate and similar considerations would apply to the dual Hamiltonians discussed
here.

7. Discussion

Motivated by recent work on the quantum X-Cube Hamiltonian and related dual models [43] we
revisit various formulations of classical spin Hamiltonians dual to the 3d plaquette Ising model. We
describe the following chain of relations between these models

Hdual3 = −∑
〈ij〉

(
σiU1

ijσj + µiU1
ijµj

)
−∑
〈ik〉

(
τiU2

ikτk + µiU2
ikµk

)
− ∑

〈jk〉

(
σjU3

jkσk + τjU3
jkτk

)
−→ (Un)Decoration −→

Hdual2 = −∑
〈ij〉

σiσjµiµj −∑
〈ik〉

τiτkµiµk −∑
〈jk〉

σjσkτjτk

−→ Gauge-Fixing −→ (32)

Hdual1 = −∑
〈ij〉

σiσj −∑
〈ik〉

τiτk −∑
〈jk〉

σjσkτjτk

−→ Non-Ising variables −→

Hdual0 = −∑
〈ij〉

σiσj −∑
〈ik〉

τiτk −∑
〈jk〉

ηjηk

−→ Kramers–Wannier duality −→

Hκ=0 = −∑
�

σiσjσkσl
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where we have indicated the operations relating the various Hamiltonians. A variant of the decoration
transformation in which edge spins are summed out relates Hdual3 to Hdual2. In transforming Hdual3
to Hdual2 the coupling is therefore transformed as β = 1

2 ln[cosh(2β̃)]. The gauge-invariant nature
of Hdual3 due to the presence of both edge and vertex spins leaves an echo in the vertex spin gauge
symmetry of Hdual2, which in turn ensures the equivalence of Hdual2 and Hdual1 via a gauge-fixing.
Allowing non-Ising spins gives a final equivalence between the dual models Hdual1 and Hdual0 and
a standard Kramers–Wannier duality transformation then takes us back to the 3d plaquette Ising
Hamiltonian of Hκ=0 where the story began.

The planar subsystem symmetry of this 3d plaquette Ising Hamiltonian Hκ=0 remains a feature of
the various dual Hamiltonians and affects the finite size scaling properties at the first order transition
displayed by these models, just as with Hκ=0. The nature of the order parameter for the various duals,
and indeed Hκ=0 itself, remains to be satisfactorily clarified. An attempt at this has been made for
Hκ=0 in [50] and indeed appeared to give sensible numerical results in [25–29]. This was based on
the observation by Suzuki et al. [51–53] that an anisotropic version of the 3d plaquette Ising model
with open boundary conditions could be transformed to an uncoupled stack of 2d Ising models and
suggested that a two spin correlator summed perpendicular to lattice planes might still serve as an
order parameter in the isotropically coupled case of Hκ=0. It would be more satisfactory to have a
less heuristic approach to an order parameter based on a clearer understanding of the nature of the
low temperature order in the 3d plaquette Ising Hamiltonian. In this respect a study of the order
parameters in the various dual models might be helpful.

In a similar vein, the principal interest in [43] was actually investigating “odd” variants of fracton
models, in which the signs of some of the terms in the Hamiltonians were reversed, leading to frustrated
models. The geometrical nature of the order in such frustrated spin models would be of interest in the
classical case too. Finally, the dynamics of the various classical Hamiltonians discussed here display
glassy features. The question of whether the glassy dynamics of the quasiparticle excitations in the
quantum models [54,55] offers any insights into this behaviour may be worth pursuing.
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