66 research outputs found

    Hormetic UV-C seed treatments for the control of tomato diseases

    Get PDF
    © 2019 British Society for Plant Pathology Hormesis is a dose response phenomenon in which low, non-damaging doses of a stressor bring about a positive response in the organism undergoing treatment. Evidence is provided here that hormetic UV-C treatments of tomato seed can control disease caused by Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici (FOL) and f. sp. radicis-lycopersici (FORL) on tomato (Solanum lycopersicum). Treating seeds with a 4kJm−2 dose of UV-C significantly reduced both the disease incidence and progression of B.cinerea, with approximately 10% reductions in both on cv. Shirley. Disease severity assays for FOL and FORL on cv. Moneymaker showed dose-dependent responses: UV-C treatments of 4 and 6kJm−2 significantly reduced the disease severity scores of FOL, whilst only the 6kJm−2 showed significant reductions for FORL. To determine the effects of treatment on germination and seedling growth, UV-C doses of 4, 8 and 12kJm−2 were performed on cv. Shirley. No negative impacts on germination or seedling growth were observed for any of the treatments. However, the 8kJm−2 treatment showed significant biostimulation, with increases in seedling, root and hypocotyl dry weight of 11.4%, 23.1% and 12.0%, respectively, when compared to the control. Furthermore, significant increases in the root-mass fraction (10.6%) and root:shoot ratio (13.1%) along with a decrease in shoot-mass fraction (2.0%) indicates that the 8kJm−2 treatment stimulated root growth to the greatest extent. There was no effect on hypocotyl and primary root length or the number of lateral roots, indicating no adverse effects to basic root architecture or seedling growth

    Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design

    Full text link
    [EN] Solanum torvum is a highly vigorous relative of eggplant that is resistant to a number of harmful soil-borne diseases and is compatible for grafting with eggplant. Being a potential rootstock, this plant frequently presents poor and erratic germination, which makes its practical use difficult. We used an L8 (2(7)) orthogonal array design to evaluate the primary effects of seven factors (soaking of seeds, scarification with sodium hypochlorite (NaClO), application of gibberellic acid (GA(3)), use of potassium mitrate (KNO3) as a moistening agent, cold stratification, application of a heatshock, and light irradiation during germination) at two levels (L0 and L1) using four germination parameters (early and final germination, germination rate and vigour index) in fresh S. torvum seeds. S. torvum seeds had a strong dormancy with no germination in the untreated seeds and high early and final germination (approximately 100%) in certain treatments. An evaluation of the main effects revealed highly positive effects on germination from seed soaking, and the use of GA(3), KNO3, and light irradiation, whereas NaClO scarification had a negative effect. The application of cold stratification and heat shock treatments also had a positive effect on seed germination but to a lesser extent than the other treatments. An improved proposed protocol that consisted of subjecting seeds to soaking, the application of GA(3) and KNO3, cold stratification, heat shock, and light irradiation was validated and demonstrated to be highly effective, with seed germination success greater than 60% being observed at 3 days and final germination reaching a plateau at 6 days. A second validation experiment using a commercial growing substrate also showed a high emergence (approximately 50%) at 7 days and a final germination of approximately 80% was recorded with application of the improved protocol. The seed germination protocol that we have developed will facilitate the use of S. torvum as a rootstock for eggplant and its use in breeding programmes. Our results also reveal that orthogonal array designs are a powerful tool for establishing improved protocols for seed germination. (C) 2015 Elsevier B.V. All rights reserved.This work was completed as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and is implemented in partnership with national and international gene banks and plant breeding institutes. For further information see the project website: http://www.cwrdiversity.org/. Isabel Andujar and Pietro Gramazio are grateful to Universitat Politecnica de Valencia for their post-doctoral (PAID-10-14) and pre-doctoral (Programa FPI de la UPV-Subprograma 1) contracts, respectively.Ranil, RH.; Niran, HML.; Plazas Ávila, MDLO.; Fonseka, R.; Hemal Fonseka, H.; Vilanova Navarro, S.; Andújar Pérez, I.... (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae. 193:174-181. https://doi.org/10.1016/j.scienta.2015.07.030S17418119
    corecore