9 research outputs found
A Multidimensional Approach to Measure Poverty in Rural Bangladesh
Poverty is increasingly being understood as a multidimensional phenomenon. Other than income-consumption, which has been extensively studied in the past, health, education, shelter, and social involvement are among the most important dimensions of poverty. The present study attempts to develop a simple tool to measure poverty in its multidimensionality where it views poverty as an inadequate fulfillment of basic needs, such as food, clothing, shelter, health, education, and social involvement. The scale score ranges between 72 and 24 and is constructed in such a way that the score increases with increasing level of poverty. Using various techniques, the study evaluates the poverty-measurement tool and provides evidence for its reliability and validity by administering it in various areas of rural Bangladesh. The reliability coefficients, such as test-retest coefficient (0.85) and Cronbach's alpha (0.80) of the tool, were satisfactorily high. Based on the socioeconomic status defined by the participatory rural appraisal (PRA) exercise, the level of poverty identified by the scale was 33% in Chakaria, 26% in Matlab, and 32% in other rural areas of the country. The validity of these results was tested against some traditional methods of identifying the poor, and the association of the scores with that of the traditional indicators, such as ownership of land and occupation, asset index (r=0.72), and the wealth ranking obtained from the PRA exercise, was consistent. A statistically significant inverse relationship of the poverty scores with the socioeconomic status was observed in all cases. The scale also allowed the absolute level of poverty to be measured, and in the present study, the highest percentage of absolute poor was found in terms of health (44.2% in Chakaria, 36.4% in Matlab, and 39.1% in other rural areas), followed by social exclusion (35.7% in Chakaria, 28.5% in Matlab, and 22.3% in other rural areas), clothing (6.2% in Chakaria, 8.3% in Matlab, and 20% in other rural areas), education (14.7% in Chakaria, 8% in Matlab, and 16.8% in other rural areas), food (7.8% in Chakaria, 2.9% in Matlab and 3% in other rural areas), and shelter (0.8% in Chakaria, 1.4% in Matlab, and 3.7% in other rural areas). This instrument will also prove itself invaluable in assessing the individual effects of poverty-alleviation programmes or policies on all these different dimensions
Association of respiratory symptoms and lung function with occupation in the multinational Burden of Obstructive Lung Disease (BOLD) study
Background
Chronic obstructive pulmonary disease has been associated with exposures in the workplace. We aimed to assess the association of respiratory symptoms and lung function with occupation in the Burden of Obstructive Lung Disease study.
Methods
We analysed cross-sectional data from 28 823 adults (≥40 years) in 34 countries. We considered 11 occupations and grouped them by likelihood of exposure to organic dusts, inorganic dusts and fumes. The association of chronic cough, chronic phlegm, wheeze, dyspnoea, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)/FVC with occupation was assessed, per study site, using multivariable regression. These estimates were then meta-analysed. Sensitivity analyses explored differences between sexes and gross national income.
Results
Overall, working in settings with potentially high exposure to dusts or fumes was associated with respiratory symptoms but not lung function differences. The most common occupation was farming. Compared to people not working in any of the 11 considered occupations, those who were farmers for ≥20 years were more likely to have chronic cough (OR 1.52, 95% CI 1.19–1.94), wheeze (OR 1.37, 95% CI 1.16–1.63) and dyspnoea (OR 1.83, 95% CI 1.53–2.20), but not lower FVC (β=0.02 L, 95% CI −0.02–0.06 L) or lower FEV1/FVC (β=0.04%, 95% CI −0.49–0.58%). Some findings differed by sex and gross national income.
Conclusion
At a population level, the occupational exposures considered in this study do not appear to be major determinants of differences in lung function, although they are associated with more respiratory symptoms. Because not all work settings were included in this study, respiratory surveillance should still be encouraged among high-risk dusty and fume job workers, especially in low- and middle-income countries.publishedVersio
高機能性キセロゲルマイクロカプセルによる原子力レアメタルの選択的分離法の開発
要約のみTohoku University三村均課
Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading
Lithium-sulfur batteries (LSBs) show promise as commercial batteries for electric vehicles (EV), portable devices and grid storage due to its low cost and high theoretical energy density. For EV applications, the areal capacity of LSBs needs to reach ~6 mAh cm to compete with the state-of-the-art LIBs. However, currently the practical application of LSBs is a great challenge due to low sulfur loading, self-discharge and low sulfur utilization. As such, different strategies have been investigated to improve the feasibility of LSBs at high sulfur loading. Such approaches are critical, but few articles have focused on the areal capacity at high sulfur loading and long term cycling performance of LSBs. This review highlights the recent progress of LSBs at high sulfur loading to achieve feasible areal capacity and long-term cycling performance. Particular attention has been placed on the cathode and separators modifications, with a discussion around anode and electrolyte modifications to improve the LSB performance
Enhancement of microbial fuel cell performance using pure magnesium anode
MFCs (Microbial Fuel Cell) are bio-electrochemical devices that use microorganisms as biocatalysts to transform the chemical energy found in organic or inorganic compounds into electric currents. However, one of the limitations of this technology in terms of practical application is its lower electric efficiency, which greatly depends on the selection of anode material and the types of waste water used. In this work, organically rich wastewater and pure magnesium anode materials were utilized. Also, to investigate the effect of electrode size on power generation, five different sizes of coin-shaped anodes were employed for the variation in anode size, whose diameter and thickness were (15 mm × 2 mm), (20 mm × 2 mm), (20 mm × 3 mm), (20 mm × 4 mm), and (25 mm × 2 mm) with corresponding surface areas [2πr(r+h)] are 448 mm 2, 754 mm 2, 817 mm 2, 880 mm 2 and 1139 mm 2, respectively. The maximum obtained current density, power density, and energy densities were 4734.26 mA/m2, 37400.625 mW/m2 and 81.59 kW-h/kg respectively, by the smallest anode of size (15 mm × 2 mm). This investigation showed that a reduction in the size of the anode decreases the loss in the activation zone. As a result, from the smallest anode, maximum power and energy output were obtained. Finally, this analysis outlines the process and approaches for MFC to produce more power at a potentially lower cost. It is noted that same waste water has been used throughout the study where surface area of the samples vary from lowest to highest level