22 research outputs found

    Recent advances in passive UHF-RFID tag antenna design for improved read range in product packaging applications: a comprehensive review

    Get PDF
    Radio frequency identification (RFID) is a rapidly developing technology, and RFID sensors have become important components in many common technology applications. The passive ultra-high frequency (UHF) tags used in RFID sensors have a higher data transfer rate and longer read range and usually come in unique small and portable application designs. However, these tags suffer from significant frequency interference when mounted on metallic materials or placed near liquid surfaces. This paper presents the recent advancements made in passive UHF-RFID tag designs proposed to resolve the interference problems. We focus on those designs that are intended to improve antenna read range as well as scalability designs for miniaturized application

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Assessment of Hydroxyapatite Nanospheres Incorporated Dentin Adhesive. A SEM/EDX, Micro-Raman, Microtensile and Micro-Indentation Study

    No full text
    Hydroxyapatite (HA) delivery with resin adhesives has potential for re-mineralization of resin–dentin interface. The study prepared an adhesive containing HA and confirmed its presence in adhesive and interaction with the dentin using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Micro-Raman spectroscopy. The aim was to assess the influence of HA incorporation in dentin adhesive on its microtensile bond strength (μ-tbs) and Knoop microhardness (KHN). Thirty teeth each were bonded with CA and HA adhesive using a 10-s smear and photo-polymerized. The specimens in each adhesive group (CA and HA) were divided into sub-groups of 24 h, 8 weeks, and 16 weeks (n = 10) aging durations. μ-tbs was assessed at a crosshead speed of 0.5 mm/minute and bonded interface was analyzed using SEM (n = 20) and Raman spectroscopy (n = 10). Softening of HA adhesive and CA was assessed using KHN. HA adhesive presented higher μ-tbs compared to CA. With an increase in storage time, HA adhesive presented with 100% adhesive failure. Softening was less and KHN was higher for HA adhesive compared to CA (p < 0.05). KHN reduction was higher in CA [19.6 (5.1)%] compared to the HA adhesives [9.7 (4.5)%]. HA adhesive showed superior μTBS and microhardness compared to CA. In the absence of nanoleakage, HA modified adhesive exhibited enhanced bond integrity and better durability of resin dentin bond compared to control adhesive

    ZnO-NPs/AC composite antibacterial agents with N-halamine glycinate functionalized silica-mesoporous silica coating for water disinfection

    No full text
    This work deals with the synthesis, structural characterization and applications of N-halamine glycinate functionalized silica-mesoporous silica coated ZnO-NPs/AC composite for water disinfection. Several nanocomposite materials were obtained: ZnO-NPs/AC, ZnO-NPs/AC@SiO2, ZnO-NPs/AC@SiO2@mSiO2, ZnO-NPs@SiO2@mSiO2-Gly and ZnO-NPs@SiO2@mSiO2-N-halamine-Gly. These nanocomposite materials were fully characterized via different physiochemical techniques including: FTIR, TGA, XPS, XRD, SEM, TEM and BET. XRD indicated a predominance of crystalline pattern of ZnO-NPs impregnated into activated carbon (AC) and their silica and m-mesoporous silica coating precursors. The FTIR spectra confirmed an immense combination between ZnO-NPs and AC of ZnO-NPs/AC nanocomposite as well as its interactions with coated silica precursors. SEM, TEM images illustrated that the fabricated ZnO-NPs/AC nanocomposites are well coated with silica-mesoporous silica functionalized N-halamine. The distinctive surface area has decreased from 800 m2/g for pristine AC to 772 m2/g for ZnO-NPs/AC and to 282 m2/g for ZnO-NPs/AC@SiO2 and to 139 m2/g for ZnO-NPs/AC@SiO2@mSiO2 and to 15.4 m2/g for ZnO-NPs@SiO2@mSiO2-N-Gly. All those nanocomposites showed good efficacy against all four bacterial species, with higher inhibition zones for the 2 g-positive bacteria than that of the 2 g-negative ones. The ZnO@SiO2@mSiO2-N-halamine-Gly exhibited the high zone inhibition against all tested bacteria except for E. Coli

    Study of Carbon Nanocones CNCkn via Connection Zagreb Indices

    No full text
    Topology of fullerenes, carbon nanotubes, and nanocones has considerable worth due to their effective applications in nanotechnology. These are emerging materials of practical application in gas storage devises, nanoelectronics devices, energy storage, biosensor, and chemical probes. The topological indices are graph invariant used to investigate the physical and chemical properties of the compounds such as boiling point, stability, and strain energy through associated chemical graph of the underlying compound. We computed recently modified Zagreb connection indices of nanocones CNC4n,CNC5n, and CNC6n and generalized our findings up to a large class of CNCkn. Topological characterization of nanocones via these indices is mathematically novel and assists to enable its emerging use in nanotechnology. For computation and verification of results, we use Mathematica software

    Influence of Hydroxyapatite Nanospheres in Dentin Adhesive on the Dentin Bond Integrity and Degree of Conversion: A Scanning Electron Microscopy (SEM), Raman, Fourier Transform-Infrared (FTIR), and Microtensile Study

    No full text
    An experimental adhesive incorporated with different nano-hydroxyapatite (n-HA) particle concentrations was synthesized and analyzed for dentin interaction, micro-tensile bond strength (μTBS), and degree of conversion (DC). n-HA powder (5 wt % and 10 wt %) were added in adhesive to yield three groups; gp-1: control experimental adhesive (CEA, 0 wt % HA), gp-2: 5 wt % n-HA (HAA-5%), and gp-3: 10 wt % n-HA (HAA-10%). The morphology of n-HA spheres was evaluated using Scanning Electron Microscopy (SEM). Their interaction in the adhesives was identified with SEM, Energy-Dispersive X-ray (EDX), and Micro-Raman spectroscopy. Teeth were sectioned, divided in study groups, and assessed for μTBS and failure mode. Employing Fourier Transform-Infrared (FTIR) spectroscopy, the DC of the adhesives was assessed. EDX mapping revealed the occurrence of oxygen, calcium, and phosphorus in the HAA-5% and HAA-10% groups. HAA-5% had the greatest μTBS values followed by HAA-10%. The presence of apatite was shown by FTIR spectra and Micro-Raman demonstrated phosphate and carbonate groups for n-HA spheres. The highest DC was observed for the CEA group followed by HAA-5%. n-HA spheres exhibited dentin interaction and formed a hybrid layer with resin tags. HAA-5% demonstrated superior μTBS compared with HAA-10% and control adhesive. The DC for HAA-5% was comparable to control adhesive

    Novel mutation of the FHL1 gene associated with congenital myopathy and early respiratory muscles involvement: a case report

    No full text
    Background: Congenital myopathies are a diverse group of diseases that share features from the early onset of symptoms in the first year of life, such as hypotonia, muscle weakness, and developmental delays, and are often associated with respiratory insufficiency and feeding difficulties. Case presentation: Here, we report an 8-year-old boy having hypotonia and signs of respiratory insufficiency that ended with tracheostomy and ventilator-dependent status. Muscle biopsy showed histological findings of congenital fiber-type disproportion myopathy. The whole exome sequencing revealed a novel hemizygous missense variant (c.530A > C p.Gln177Pro) that confirms the diagnosis of FHL1-associated congenital myopathy. Conclusion: The findings in this study help to expand the genetic and mutational spectrum of the FHL1 gene associated with respiratory insufficiency and help in formulating a precise strategy for prognosis and future management of patients. [JBCGenetics 2020; 3(1.000): 45-51

    Development of Security Rules and Mechanisms to Protect Data from Assaults

    No full text
    Cloud cryptography is the art of converting plain text into an unreadable format, which protects data and prevents the data from being misused by the attacker. Different researchers designed various Caesar cipher algorithms for data security. With the help of these algorithms, the data can be converted into a nonreadable format, but the data cannot be completely secured. In this paper, data security is provided in different phases. Firstly, data are secured through a bit-reversing mechanism in which those replace the actual values with no relation to the original data. Then the four-bit values are added at the beginning and end of bits using a salting mechanism to interlink the salting and existing bit-values and hide the original data. A Caesar cipher value is obtained by applying the Caesar cipher algorithm to the resulting bits. The Caesar cipher algorithm is used to implement number-of-shifting on the obtained values. An efficient cipher matrix algorithm is then developed in which different rules are designed to encrypt the data. Afterward, a secure cipher value is obtained by implementing Cipher XORation rules on the result obtained and the user-defined key. In the end, the proposed algorithm is compared with various papers. It identifies how much better the proposed algorithm performs than all the previous algorithms and how much the attack rate can be reduced if this algorithm is used for data security

    Influence of graphene oxide filler content on the dentin bond integrity, degree of conversion and bond strength of experimental adhesive. A SEM, micro-Raman, FTIR and microtensile study

    No full text
    The study aimed to evaluate the effect of graphene oxide (GO) nano-filler content in experimental dental adhesive on its degree of conversion (DC), microtensile bond strength ( μ TBS) and structural reliability, using Fourier transform infrared spectroscopy (FTIR), Micro-Raman spectroscopy and Scanning electron microscopy (SEM). A resin adhesive was fabricated (control adhesive - CA) and fabricated GO nano-particles were added at 0.5% and 2.0% (m/m) to produce adhesives GOA1 and GOA2 respectively. One hundred and two teeth (specimens) were prepared for dentin exposure and conditioned with 36% phosphoric acid. Specimens in each group (n = 34) were treated with formulated adhesives (CA, GOA1 & GOA2) and photo-polymerized for 20 s followed by composite build up. Sixty specimens were used for μ TBS testing in the adhesive groups (CA, GOA1 & GOA2), with half exposed to thermocycling (TC) whereas the remaining half (n = 10) stored in distilled water. Seven specimens each were assessed using SEM and Micro-Raman spectroscopy, in each adhesive group (n = 7). DC for the adhesives was assessed using FTIR. The means of μ TBS and DC were analyzed using ANOVA and post hoc Tukey multiple comparisons test. GO nano-filler content showed significant influence on the adhesive μ TBS in comparison to controls (p  0.05). DC was significantly higher in control adhesive [46.8 (3.6)%] compared to GOA2 [37.7 (4.2)%] specimens, however DC was comparable among GOA1 [42.3 (2.9)%] and GOA2 [37.7 (4.2)%] specimens (p > 0.05) respectively. GO exhibited interaction within adhesive and tooth dentin comparable to control adhesive. Increasing GO content showed increase in μ TBS of adhesive to dentin, but a decrease in degree of conversion. Under ideal conditions, experimental adhesive with 2% GO content showed acceptable bond strength and DC; and should be further assessed under dynamic conditions to recommend clinical use
    corecore